BibTex RIS Cite

Low Cost Functional Electrostimulation

Year 2021, Volume: 2 Issue: 1, 38 - 43, 02.07.2021

Abstract

Functional electrical stimulation is the stimulation of neurons by electric current in order to perform a functional movement towards daily life activities. Currently, ankle orthoses are used to fix foot status at 900 for low foot patients. The orthoses does not supplies a natural gait form as it results with stanble ankle position. The main reason why FES use is not widespread is, that the patients can not afford the costs as it is too high. At this study a low-cost, lightweight, functional electrical stimulation device with heel pressure sensor is designed. Foot pressure sensor is used to control walking. Square wave is used to perform stimulation with arduino nano. This square wave signal is applied continuously at intervals of 200 milliseconds while the foot is up. Square wave is increased with LM2577 integration to input and the voltage of the TIP122 power transistor has been used to control output power. Working volt range can be adjustable between 20-40 Volts with 50 mA current at 20 Hz with response time as 0.8 sn. Low cost FES devices can be used for patients, as it has very positive contributions to human health and increases the quality of life.

References

  • [1] H. Köylü, Klinik Anlatımlı Tıbbi Fizyoloji. Nobel Tıp Kitabevleri, 2014.
  • [2] M. Malezic, M. Kljajić, R. Aćimović-Janezic, N. Gros, J. Krajnik, and U. Stanic, “Therapeutic effects of multisite electric stimulation of gait in motor-disabled patients.,” Arch. Phys. Med. Rehabil., 1987.
  • [3] L. Malone, C. Ellis-Hill, and I. Swain, “Using the Odstock dropped foot stimulator: Users and partners perspectives,” 2002.
  • [4] R. L. Waters, D. McNeal, and J. Perry, “Experimental correction of footdrop by electrical stimulation of the peroneal nerve.,” J. Bone Joint Surg. Am., vol. 57, no. 8, pp. 1047–1054, 1975.
  • [5] W. T. Lıberson, H. J. Holmquest, D. Scot, And M. Dow, “Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients.,” Arch. Phys. Med. Rehabil., 1961.
  • [6] C. L. Lynch and M. R. Popovic, “Closed-loop control for FES: Past work and future directions,” in 10th Annual Conference of the International FES Society, 2005, pp. 2–4.
  • [7] C. L. Lynch and M. R. Popovic, “Functional electrical stimulation,” IEEE Control Syst. Mag., vol. 28, no. 2, pp. 40–50, 2008.
  • [8] P. S. Cooper, “Application of external fixators for management of Charcot deformities of the foot and ankle,” Foot Ankle Clin., vol. 7, no. 1, pp. 207–254, 2002.
  • [9] D. R. McNeal and J. B. Reswick, “Control of skeletal muscle by electrical stimulation,” Adv. Biomed. Eng., pp. 209–256, 1976.
  • [10] H. Ring and N. Rosenthal, “Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation,” J. Rehabil. Med., vol. 37, no. 1, pp. 32–36, 2005.
  • [11] R. ACimoviC-Janeki, “Application of a progr mable dual-charnel adaptive electrical stimulation system for the control and analysis of gait,” J. Rehabil. Res. Dev., vol. 29, no. 4, 1992.
  • [12] Ch. Chou et al., “Application of FES for hemiplegia in extremity coordination training,” in 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, pp. 1–4.
  • [13] S. K. Sabut and M. Manjunatha, “Neuroprosthesis-functional electrical stimulation: opportunities in clinical application for correction of drop-foot,” in 2008 First International Conference on Emerging Trends in Engineering and Technology, 2008, pp. 950–953.
  • [14] T. O’Halloran, M. Haugland, G. M. Lyons, and T. Sinkjær, “Modified implanted drop foot stimulator system with graphical user interface for customised stimulation pulse-width profiles,” Med. Biol. Eng. Comput., vol. 41, no. 6, pp. 701–709, 2003.
  • [15] P. P. Breen, D. T. O’Keeffe, R. Conway, and G. M. Lyons, “A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications,” Med. Eng. Phys., vol. 28, no. 2, pp. 177–186, 2006.
  • [16] H. D. Lyons GM, Wilcox DJ, Lyons DJ, “Evaluation of a Drop Foot Stimulator FES Intensity Envelope Matched to Tibialis Anterior Muscle Activity during Walking,” 5th Annu. Conf. Int. Funct. Electr. Stimul. Soc., pp. 1–4, 2000, [Online]. Available: http://ifess.org/node/1700.
  • [17] D. T. O’Keeffe, A. E. Donnelly, and G. M. Lyons, “The development of a potential optimized stimulation intensity envelope for drop foot applications,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 3, pp. 249–256, 2003.
  • [18] R. B. Stein, D. J. Weber, K. M. Chan, G. E. Loeb, R. Rolf, and S. L. Chong, “Stimulation of peripheral nerves with a microstimulator: experimental results and clinical application to correct foot drop,” 2004.
  • [19] P. P. Breen, G. J. Corley, D. T. O’Keeffe, R. Conway, and G. ÓLaighin, “A programmable and portable NMES device for drop foot correction and blood flow assist applications,” Med. Eng. Phys., vol. 31, no. 3, pp. 400–408, 2009, doi: 10.1016/j.medengphy.2008.05.003.
  • [20] J. A. Hoffer et al., “Initial results with fully implanted Neurostep FES system for foot drop,” 2005.
  • [21] I. Banchs et al., “Diagnosis of charcot-marie-tooth disease,” J. Biomed. Biotechnol., vol. 2009, 2009.
  • [22] M. J. Overman, C. C. Compton, K. Raghav, and L. A. Lambert, “Appendiceal mucinous lesions,” UpToDate. Chen W UpToDate Inc, 2020.
  • [23] W. J. Mysiw and R. D. Jackson, “Electrical stimulation,” Phys. Med. Rehabil., pp. 479–506, 1996.
  • [24] S. H. Wright, “Generation of resting membrane potential,” Adv. Physiol. Educ., vol. 28, no. 4, pp. 139–142, 2004.
  • [25] H. Köylü, “Sinir ve Kas Fizyolojisi,” in Tıbbi Fizyoloji, 3rd ed., İstanbul: İstanbul Tıp Kitabevleri, 2019, pp. 19-44 125-136.
  • [26] J. P. Reilly and A. M. Diamant, Electrostimulation: theory, applications, and computational model. Artech House, 2011.

Düşük Maliyetli Fonksiyonel Elektrostimülasyon

Year 2021, Volume: 2 Issue: 1, 38 - 43, 02.07.2021

Abstract

Fonksiyonel elektriksel uyarım, günlük yaşam aktivitelerine yönelik fonksiyonel bir hareket gerçekleştirmek için nöronların elektrik akımı ile uyarılmasıdır. Şu anda ayak bileği ortezleri düşük ayak hastaları için ayak durumunu 900'de sabitlemek için kullanılmaktadır. Ortezler, ayak bileği dik pozisyonu ile sonuçlandığından doğal bir yürüyüş formu sağlamaz. FES kullanımının yaygın olmamasının temel nedeni, hastaların çok yüksek olduğu için maliyetleri karşılayamamasıdır. Bu çalışmada düşük maliyetli, hafif, fonksiyonel, topuk basınç sensörlü bir elektriksel stimülasyon cihazı tasarlanmıştır. Yürümeyi kontrol etmek için ayak basınç sensörü kullanılmıştır. Arduino nano ile stimülasyon gerçekleştirmek için kare dalga elde edilmiştir. Bu kare dalga sinyali, ayak yukarıdayken 200 milisaniyelik aralıklarla sürekli olarak uygulanmaktadır. Girişe LM2577 entegrasyonu ile kare dalga artırılmıştır ve TIP122 güç transistörünün voltajı çıkış gücünü kontrol etmek için kullanılmıştır. Çalışma volt aralığı 20 Hz'de 50 mA akım ile 20-40 Volt arasında, tepki süresi 0.8 sn olarak ayarlanabilir şekildedir. İnsan sağlığına çok olumlu katkıları olduğu ve yaşam kalitesini artırdığı için düşük maliyetli FES cihazları hastalar için kullanılabilirler.

References

  • [1] H. Köylü, Klinik Anlatımlı Tıbbi Fizyoloji. Nobel Tıp Kitabevleri, 2014.
  • [2] M. Malezic, M. Kljajić, R. Aćimović-Janezic, N. Gros, J. Krajnik, and U. Stanic, “Therapeutic effects of multisite electric stimulation of gait in motor-disabled patients.,” Arch. Phys. Med. Rehabil., 1987.
  • [3] L. Malone, C. Ellis-Hill, and I. Swain, “Using the Odstock dropped foot stimulator: Users and partners perspectives,” 2002.
  • [4] R. L. Waters, D. McNeal, and J. Perry, “Experimental correction of footdrop by electrical stimulation of the peroneal nerve.,” J. Bone Joint Surg. Am., vol. 57, no. 8, pp. 1047–1054, 1975.
  • [5] W. T. Lıberson, H. J. Holmquest, D. Scot, And M. Dow, “Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients.,” Arch. Phys. Med. Rehabil., 1961.
  • [6] C. L. Lynch and M. R. Popovic, “Closed-loop control for FES: Past work and future directions,” in 10th Annual Conference of the International FES Society, 2005, pp. 2–4.
  • [7] C. L. Lynch and M. R. Popovic, “Functional electrical stimulation,” IEEE Control Syst. Mag., vol. 28, no. 2, pp. 40–50, 2008.
  • [8] P. S. Cooper, “Application of external fixators for management of Charcot deformities of the foot and ankle,” Foot Ankle Clin., vol. 7, no. 1, pp. 207–254, 2002.
  • [9] D. R. McNeal and J. B. Reswick, “Control of skeletal muscle by electrical stimulation,” Adv. Biomed. Eng., pp. 209–256, 1976.
  • [10] H. Ring and N. Rosenthal, “Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation,” J. Rehabil. Med., vol. 37, no. 1, pp. 32–36, 2005.
  • [11] R. ACimoviC-Janeki, “Application of a progr mable dual-charnel adaptive electrical stimulation system for the control and analysis of gait,” J. Rehabil. Res. Dev., vol. 29, no. 4, 1992.
  • [12] Ch. Chou et al., “Application of FES for hemiplegia in extremity coordination training,” in 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, pp. 1–4.
  • [13] S. K. Sabut and M. Manjunatha, “Neuroprosthesis-functional electrical stimulation: opportunities in clinical application for correction of drop-foot,” in 2008 First International Conference on Emerging Trends in Engineering and Technology, 2008, pp. 950–953.
  • [14] T. O’Halloran, M. Haugland, G. M. Lyons, and T. Sinkjær, “Modified implanted drop foot stimulator system with graphical user interface for customised stimulation pulse-width profiles,” Med. Biol. Eng. Comput., vol. 41, no. 6, pp. 701–709, 2003.
  • [15] P. P. Breen, D. T. O’Keeffe, R. Conway, and G. M. Lyons, “A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications,” Med. Eng. Phys., vol. 28, no. 2, pp. 177–186, 2006.
  • [16] H. D. Lyons GM, Wilcox DJ, Lyons DJ, “Evaluation of a Drop Foot Stimulator FES Intensity Envelope Matched to Tibialis Anterior Muscle Activity during Walking,” 5th Annu. Conf. Int. Funct. Electr. Stimul. Soc., pp. 1–4, 2000, [Online]. Available: http://ifess.org/node/1700.
  • [17] D. T. O’Keeffe, A. E. Donnelly, and G. M. Lyons, “The development of a potential optimized stimulation intensity envelope for drop foot applications,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 3, pp. 249–256, 2003.
  • [18] R. B. Stein, D. J. Weber, K. M. Chan, G. E. Loeb, R. Rolf, and S. L. Chong, “Stimulation of peripheral nerves with a microstimulator: experimental results and clinical application to correct foot drop,” 2004.
  • [19] P. P. Breen, G. J. Corley, D. T. O’Keeffe, R. Conway, and G. ÓLaighin, “A programmable and portable NMES device for drop foot correction and blood flow assist applications,” Med. Eng. Phys., vol. 31, no. 3, pp. 400–408, 2009, doi: 10.1016/j.medengphy.2008.05.003.
  • [20] J. A. Hoffer et al., “Initial results with fully implanted Neurostep FES system for foot drop,” 2005.
  • [21] I. Banchs et al., “Diagnosis of charcot-marie-tooth disease,” J. Biomed. Biotechnol., vol. 2009, 2009.
  • [22] M. J. Overman, C. C. Compton, K. Raghav, and L. A. Lambert, “Appendiceal mucinous lesions,” UpToDate. Chen W UpToDate Inc, 2020.
  • [23] W. J. Mysiw and R. D. Jackson, “Electrical stimulation,” Phys. Med. Rehabil., pp. 479–506, 1996.
  • [24] S. H. Wright, “Generation of resting membrane potential,” Adv. Physiol. Educ., vol. 28, no. 4, pp. 139–142, 2004.
  • [25] H. Köylü, “Sinir ve Kas Fizyolojisi,” in Tıbbi Fizyoloji, 3rd ed., İstanbul: İstanbul Tıp Kitabevleri, 2019, pp. 19-44 125-136.
  • [26] J. P. Reilly and A. M. Diamant, Electrostimulation: theory, applications, and computational model. Artech House, 2011.
There are 26 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering
Journal Section Research Articles
Authors

Şule Özgüner 0000-0002-1837-919X

Ömer Alaca 0000-0002-6232-5447

Ferdi Başkurt 0000-0002-8997-4172

Hatice Akman 0000-0002-1416-2057

Publication Date July 2, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Özgüner, Ş., Alaca, Ö., Başkurt, F., Akman, H. (2021). Low Cost Functional Electrostimulation. Research Journal of Biomedical and Biotechnology, 2(1), 38-43.
AMA Özgüner Ş, Alaca Ö, Başkurt F, Akman H. Low Cost Functional Electrostimulation. RJBB. July 2021;2(1):38-43.
Chicago Özgüner, Şule, Ömer Alaca, Ferdi Başkurt, and Hatice Akman. “Low Cost Functional Electrostimulation”. Research Journal of Biomedical and Biotechnology 2, no. 1 (July 2021): 38-43.
EndNote Özgüner Ş, Alaca Ö, Başkurt F, Akman H (July 1, 2021) Low Cost Functional Electrostimulation. Research Journal of Biomedical and Biotechnology 2 1 38–43.
IEEE Ş. Özgüner, Ö. Alaca, F. Başkurt, and H. Akman, “Low Cost Functional Electrostimulation”, RJBB, vol. 2, no. 1, pp. 38–43, 2021.
ISNAD Özgüner, Şule et al. “Low Cost Functional Electrostimulation”. Research Journal of Biomedical and Biotechnology 2/1 (July 2021), 38-43.
JAMA Özgüner Ş, Alaca Ö, Başkurt F, Akman H. Low Cost Functional Electrostimulation. RJBB. 2021;2:38–43.
MLA Özgüner, Şule et al. “Low Cost Functional Electrostimulation”. Research Journal of Biomedical and Biotechnology, vol. 2, no. 1, 2021, pp. 38-43.
Vancouver Özgüner Ş, Alaca Ö, Başkurt F, Akman H. Low Cost Functional Electrostimulation. RJBB. 2021;2(1):38-43.