Research Article
BibTex RIS Cite

Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain

Year 2021, Volume: 2 Issue: 2, 83 - 104, 31.12.2021
https://doi.org/10.53501/rteufemud.1017909

Abstract

In this study, based on the Manzanares prototype, a typical SCPP system is considered with a collector height of 1.85 m, a chimney with a height of 194.6 m and a diameter of 10.16 m, and a collector with a radius of 122 m. With the 3D CFD model designed in ANSYS, the impacts of the change in the collector radius and collector height on the system performance are analysed by considering the turbulence effects. The numerical results are compared with the experimental data on the power output capacity of the pilot plant at different radiant fluxes and a good agreement is obtained. Then, by taking the chimney height and diameter constant, the numerical solutions are repeated for different collector radii in the range of 52.5-175 m. The results indicate that increasing the collector area, which means increasing the energy entering the system, leads to a notable improvement in the power output of the pilot plant. With a collector radius of 175 m, a power output of 95 kW can be obtained whereas it is 55 kW in the reference case with a collector radius of 122 m. Similarly, the solutions are repeated by changing the collector height between 1.1 and 4 m while keeping the other dimensions constant. It is seen that the increase in collector height negatively affects the performance of the system. It is observed that reducing the collector height to 1.1 m for the pilot plant can increase the power output to 61.77 kW.

References

  • Abdelmohimen, M.A.H. Algarni, S.A. (2018). Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions. Sustainable Cities and Society, 38, 1-8. DOI: https://doi.org/10.1016/j.scs.2017.12.013
  • Ahirwar, M. J., Sharma, P. (2019). Analyzing the Effect of Solar Chimney Power Plant by Varying Chimney Height, Collector Slope and Chimney Diverging Angle. International Journal of Innovative Research in Technology, 6(7), 213-219.
  • Al Alawin, A., Badran, O., Awad, A., Abdelhadi, Y., Al-Mofleh, A. (2012). Feasibility study of a solar chimney power plant in Jordan. Applied Solar Energy, 48(4), 260-265. DOI: https://doi.org/10.3103/S0003701X12040020
  • Ansys Inc, 2016. ANSYS Fluent 16 Theory Guide.
  • Ayadi, A., Driss, Z., Bouabidi, A., Nasraoui, H., Bsisa, M., Abid, M. S. (2018). A computational and an experimental study on the effect of the chimney height on the thermal characteristics of a solar chimney power plant. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232(4), 503-516. DOI: https://doi.org/10.1177%2F0954408917719776
  • Bouabidi, A., Ayadi, A., Nasraoui, H., Driss, Z., Abid, M. S. (2018). Study of solar chimney in Tunisia: Effect of the chimney configurations on the local flow characteristics. Energy and Buildings, 169, 27-38. DOI: https://doi.org/10.1016/j.enbuild.2018.01.049
  • Cuce, E. and Bali, T. (2009). Variation of cell parameters of a p-Si PV cell with different solar irradiances and cell temperatures in humid climates. Fourth International Exergy, Energy and Environment Symposium. 19-23 April 2009, Sharjah, United Arab Emirates.
  • Cuce, E. and Cuce, P.M. (2019a). Performance assessment of solar chimneys: Part 1 – Impact of chimney height on power output. Energy Research Journal, 10, 11-19.
  • Cuce, E. and Cuce, P.M. (2019b). Performance assessment Energy Research Journal of solar chimneys: Part 2 – Impacts of slenderness value and collector slope on power output. Energy Research Journal, 10, 20-26.
  • Cuce, E., Cuce, P.M., Sen, H. (2020a). A thorough performance assessment of solar chimney power plants: Case study for Manzanares. Cleaner Engineering and Technology, 1, 100026. DOI: https://doi.org/10.1016/j.clet.2020.100026
  • Cuce, E., Sen, H., Cuce, P.M. (2020b). Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain. Sustainable Energy Technologies and Assessments, 39, 100704. DOI: https://doi.org/10.1016/j.seta.2020.100704
  • Cuce, P. M., Cuce, E., Sen, H. (2020c). Improving electricity production in solar chimney power plants with sloping ground design: an extensive CFD research. Journal of Solar Energy Research Updates, 7(1), 122-131. DOI: http://dx.doi.org/10.31875/2410-2199.2020.07.9
  • Cuce, E., Saxena, A., Cuce, P. M., Sen, H., Guo, S., Sudhakar, K. (2021). Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry. International Journal of Low-Carbon Technologies. DOI: https://doi.org/10.1093/ijlct/ctaa097
  • Cuce, E., Cuce, P. M., Sen, H., Sudhakar, K., Berardi, U., Serencam, U. (2021b). Impacts of Ground Slope on Main Performance Figures of Solar Chimney Power Plants: A Comprehensive CFD Research with Experimental Validation. International Journal of Photoenergy, 2021. DOI: https://doi.org/10.1155/2021/6612222
  • Dai, Y.J., Huang, H.B., Wang, R.Z. (2003). Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28(8), 1295-1304. DOI: https://doi.org/10.1016/S0960-1481(02)00227-6
  • Daimallah, A., Lebbi, M., Lounici, M. S., Boutina, L. (2020). Effect of Thermal Collector Height and Radius on Hydrodynamic Flow Control in Small Solar Chimney. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 71(2), 10-25. DOI: https://doi.org/10.37934/arfmts.71.2.1025
  • Das, P., Chandramohan, V. P. (2020). 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: Impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency. Journal of Cleaner Production, 256, 120353. DOI: https://doi.org/10.1016/j.jclepro.2020.120353
  • Dewangan, S. K. (2021). Effect of collector roof cum chimney divergence and exhaust fan on solar chimney power plant performance. International Journal of Energy and Environmental Engineering, 1-18. DOI: https://doi.org/10.1007/s40095-021-00426-9
  • Dhahri, A. and Omri, A. (2013). A review of solar chimney power generation technology. International Journal of Engineering and Advanced Technology, 2(3), 1-17.
  • Dhahri, A., Omri, A., Orfi, J. (2014). Numerical study of a solar chimney power plant. Research Journal of Applied Sciences, Engineering and Technology, 8(18), 1953-1965. DOI: https://dpi.org/10.19026/rjaset.8.1187
  • dos Santos Bernardes, M.A., Von Backström, T.W., Kröger, D.G. (2009). Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors. Solar Energy, 83(2), 264-275. DOI: https://doi.org/10.1016/j.solener.2008.07.019
  • Guo, P.H., Li, J.Y., Wang, Y. (2014). Numerical simulations of solar chimney power plant with radiation model. Renewable energy, 62, 24-30. DOI: https://doi.org/10.1016/j.renene.2013.06.039
  • Haaf, W., Friedrich, K., Mayr, G., Schlaich, J. (1983). Solar chimneys part I: principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3-20. DOI: https://doi.org/10.1080/01425918308909911
  • Haaf, W. (1984). Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant. International Journal of Sustainable Energy, 2(2), 141-161. DOI: https://doi.org/10.1080/01425918408909921
  • Hassan, A., Ali, M., Waqas, A. (2018). Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy, 142, 411-425. DOI: https://doi.org/10.1016/j.energy.2017.10.047
  • Hoseini, H., Mehdipour, R. (2018). Evaluation of solar-chimney power plants with multiple-angle collectors. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 8(1), 85-96. DOI: https://dx.doi.org/10.22061/jcarme.2017.2282.1213
  • Hu, S., Leung, D. Y., Chan, J. C. (2017). Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy, 120, 1-11. DOI: https://doi.org/10.1016/j.energy.2016.12.098
  • Kashiwa, B.A., Kashiwa, C.B. (2008). The solar cyclone: A solar chimney for harvesting atmospheric water. Energy, 33(2), 331-339. DOI: https://doi.org/10.1016/j.energy.2007.06.003
  • Keshari, S. R., Chandramohan, V. P., Das, P. (2021). A 3D numerical study to evaluate optimum collector inclination angle of Manzanares solar updraft tower power plant. Solar Energy, 226, 455-467. DOI: https://doi.org/10.1016/j.solener.2021.08.062
  • Li, J. Y., Guo, P. H., Wang, Y. (2012). Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renewable Energy, 47, 21-28. DOI: https://doi.org/10.1016/j.renene.2012.03.018
  • Mullett, L.B. (1987). The solar chimney-Overall efficiency, design and performance. International journal of ambient energy, 8(1), 35-40. DOI: https://doi.org/10.1080/01430750.1987.9675512
  • Nasraoui, H., Driss, Z., Kchaou, H. (2020). Effect of the chimney design on the thermal characteristics in solar chimney power plant. Journal of Thermal Analysis and Calorimetry, 140(6), 2721-2732. DOI: https://doi.org/10.1007/s10973-019-09037-3
  • Nizetic, S., Ninic, N., Klarin, B. (2008). Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy, 33(11), 1680-1690. DOI: https://doi.org/10.1016/j.energy.2008.05.012
  • Pasumarthi, N. and Sherif, S.A. (1998a). Experimental and theoretical performance of a demonstration solar chimney model-Part I: mathematical model development. International Journal of Energy Research, 22(3), 277-288. DOI:https://doi.org/10.1002/(SICI)1099-114X(19980310)22:3<277::AID-R380>3.0.CO;2-R
  • Pasumarthi, N. and Sherif, S.A. (1998b). Experimental and theoretical performance of a demonstration solar chimney model-Part II: experimental and theoretical results and economic analysis. International journal of energy research, 22(5), 443-461. DOI: https://doi.org/10.1002/(SICI)1099-114X(199804)22:5<443::AID-ER381>3.0.CO;2-V
  • Schlaich, J., Bergermann, R., Schier W., Weinrebe, G. (2005). Design of commercial solar updraft tower systems utilization of solar induced convective flows for power generation. J Sol Energy Eng, 127(1), 117–24. DOI: https://doi.org/10.1115/1.1823493
  • Sen, H. and Cuce, E. (2020). Dynamic pressure distributions in solar chimney power plants: A numerical research for the pilot plant in Manzanares, Spain. WSSET Newsletter, 12(1), 2-2.
  • Setareh, M. (2021). Comprehensive mathematical study on solar chimney powerplant. Renewable Energy, 175, 470-485. DOI: https://doi.org/10.1016/j.renene.2021.05.017
  • Shahi, D.V.V., Gupta, M.A., Nayak, M.V.S. (2018). CFD Analysis of solar chimney wind power plant by Ansys Fluent. Int J Technol Res Eng, 5(9), 3746-3751.
  • Tayebi, T., Djezzar, M., Gouidmi, H. (2018). 3D numerical study of flow in a solar chimney power plant system. Sciences & Technology, 3(1), 17-20.
  • Toghraie, D., Karami, A., Afrand, M., Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052-1061. DOI: https://doi.org/10.1016/j.energy.2018.08.086
  • Xu, Y., Zhou, X. (2018). Performance of divergent-chimney solar power plants. Solar Energy, 170, 379-387. DOI: https://doi.org/10.1016/j.solener.2018.05.068
  • Yapıcı, E. Ö., Ayli, E., Nsaif, O. (2020). Numerical investigation on the performance of a small scale solar chimney power plant for different geometrical parameters. Journal of Cleaner Production, 276, 122908. DOI: https://doi.org/10.1016/j.jclepro.2020.122908
  • Zandian, A., Ashjaee, M. (2013.) The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy, 51, 465-473. DOI: https://doi.org/10.1016/j.renene.2012.09.051
  • Zhou, X., Yang, J., Xiao, B., Hou, G. (2007) Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering, 27(11-12), 2044-2050. DOI: https://doi.org/10.1016/j.applthermaleng.2006.12.007
  • Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F. (2009). Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering, 29(1), 178-185. DOI: https://doi.org/10.1016/j.applthermaleng.2008.02.014

Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain

Year 2021, Volume: 2 Issue: 2, 83 - 104, 31.12.2021
https://doi.org/10.53501/rteufemud.1017909

Abstract

In this study, based on the Manzanares prototype, a typical SCPP system is considered with a collector height of 1.85 m, a chimney with a height of 194.6 m and a diameter of 10.16 m, and a collector with a radius of 122 m. With the 3D CFD model designed in ANSYS, the impacts of the change in the collector radius and collector height on the system performance are analysed by considering the turbulence effects. The numerical results are compared with the experimental data on the power output capacity of the pilot plant at different radiant fluxes and a good agreement is obtained. Then, by taking the chimney height and diameter constant, the numerical solutions are repeated for different collector radii in the range of 52.5-175 m. The results indicate that increasing the collector area, which means increasing the energy entering the system, leads to a notable improvement in the power output of the pilot plant. With a collector radius of 175 m, a power output of 95 kW can be obtained whereas it is 55 kW in the reference case with a collector radius of 122 m. Similarly, the solutions are repeated by changing the collector height between 1.1 and 4 m while keeping the other dimensions constant. It is seen that the increase in collector height negatively affects the performance of the system. It is observed that reducing the collector height to 1.1 m for the pilot plant can increase the power output to 61.77 kW.

References

  • Abdelmohimen, M.A.H. Algarni, S.A. (2018). Numerical investigation of solar chimney power plants performance for Saudi Arabia weather conditions. Sustainable Cities and Society, 38, 1-8. DOI: https://doi.org/10.1016/j.scs.2017.12.013
  • Ahirwar, M. J., Sharma, P. (2019). Analyzing the Effect of Solar Chimney Power Plant by Varying Chimney Height, Collector Slope and Chimney Diverging Angle. International Journal of Innovative Research in Technology, 6(7), 213-219.
  • Al Alawin, A., Badran, O., Awad, A., Abdelhadi, Y., Al-Mofleh, A. (2012). Feasibility study of a solar chimney power plant in Jordan. Applied Solar Energy, 48(4), 260-265. DOI: https://doi.org/10.3103/S0003701X12040020
  • Ansys Inc, 2016. ANSYS Fluent 16 Theory Guide.
  • Ayadi, A., Driss, Z., Bouabidi, A., Nasraoui, H., Bsisa, M., Abid, M. S. (2018). A computational and an experimental study on the effect of the chimney height on the thermal characteristics of a solar chimney power plant. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232(4), 503-516. DOI: https://doi.org/10.1177%2F0954408917719776
  • Bouabidi, A., Ayadi, A., Nasraoui, H., Driss, Z., Abid, M. S. (2018). Study of solar chimney in Tunisia: Effect of the chimney configurations on the local flow characteristics. Energy and Buildings, 169, 27-38. DOI: https://doi.org/10.1016/j.enbuild.2018.01.049
  • Cuce, E. and Bali, T. (2009). Variation of cell parameters of a p-Si PV cell with different solar irradiances and cell temperatures in humid climates. Fourth International Exergy, Energy and Environment Symposium. 19-23 April 2009, Sharjah, United Arab Emirates.
  • Cuce, E. and Cuce, P.M. (2019a). Performance assessment of solar chimneys: Part 1 – Impact of chimney height on power output. Energy Research Journal, 10, 11-19.
  • Cuce, E. and Cuce, P.M. (2019b). Performance assessment Energy Research Journal of solar chimneys: Part 2 – Impacts of slenderness value and collector slope on power output. Energy Research Journal, 10, 20-26.
  • Cuce, E., Cuce, P.M., Sen, H. (2020a). A thorough performance assessment of solar chimney power plants: Case study for Manzanares. Cleaner Engineering and Technology, 1, 100026. DOI: https://doi.org/10.1016/j.clet.2020.100026
  • Cuce, E., Sen, H., Cuce, P.M. (2020b). Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain. Sustainable Energy Technologies and Assessments, 39, 100704. DOI: https://doi.org/10.1016/j.seta.2020.100704
  • Cuce, P. M., Cuce, E., Sen, H. (2020c). Improving electricity production in solar chimney power plants with sloping ground design: an extensive CFD research. Journal of Solar Energy Research Updates, 7(1), 122-131. DOI: http://dx.doi.org/10.31875/2410-2199.2020.07.9
  • Cuce, E., Saxena, A., Cuce, P. M., Sen, H., Guo, S., Sudhakar, K. (2021). Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry. International Journal of Low-Carbon Technologies. DOI: https://doi.org/10.1093/ijlct/ctaa097
  • Cuce, E., Cuce, P. M., Sen, H., Sudhakar, K., Berardi, U., Serencam, U. (2021b). Impacts of Ground Slope on Main Performance Figures of Solar Chimney Power Plants: A Comprehensive CFD Research with Experimental Validation. International Journal of Photoenergy, 2021. DOI: https://doi.org/10.1155/2021/6612222
  • Dai, Y.J., Huang, H.B., Wang, R.Z. (2003). Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 28(8), 1295-1304. DOI: https://doi.org/10.1016/S0960-1481(02)00227-6
  • Daimallah, A., Lebbi, M., Lounici, M. S., Boutina, L. (2020). Effect of Thermal Collector Height and Radius on Hydrodynamic Flow Control in Small Solar Chimney. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 71(2), 10-25. DOI: https://doi.org/10.37934/arfmts.71.2.1025
  • Das, P., Chandramohan, V. P. (2020). 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: Impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency. Journal of Cleaner Production, 256, 120353. DOI: https://doi.org/10.1016/j.jclepro.2020.120353
  • Dewangan, S. K. (2021). Effect of collector roof cum chimney divergence and exhaust fan on solar chimney power plant performance. International Journal of Energy and Environmental Engineering, 1-18. DOI: https://doi.org/10.1007/s40095-021-00426-9
  • Dhahri, A. and Omri, A. (2013). A review of solar chimney power generation technology. International Journal of Engineering and Advanced Technology, 2(3), 1-17.
  • Dhahri, A., Omri, A., Orfi, J. (2014). Numerical study of a solar chimney power plant. Research Journal of Applied Sciences, Engineering and Technology, 8(18), 1953-1965. DOI: https://dpi.org/10.19026/rjaset.8.1187
  • dos Santos Bernardes, M.A., Von Backström, T.W., Kröger, D.G. (2009). Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors. Solar Energy, 83(2), 264-275. DOI: https://doi.org/10.1016/j.solener.2008.07.019
  • Guo, P.H., Li, J.Y., Wang, Y. (2014). Numerical simulations of solar chimney power plant with radiation model. Renewable energy, 62, 24-30. DOI: https://doi.org/10.1016/j.renene.2013.06.039
  • Haaf, W., Friedrich, K., Mayr, G., Schlaich, J. (1983). Solar chimneys part I: principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3-20. DOI: https://doi.org/10.1080/01425918308909911
  • Haaf, W. (1984). Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant. International Journal of Sustainable Energy, 2(2), 141-161. DOI: https://doi.org/10.1080/01425918408909921
  • Hassan, A., Ali, M., Waqas, A. (2018). Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy, 142, 411-425. DOI: https://doi.org/10.1016/j.energy.2017.10.047
  • Hoseini, H., Mehdipour, R. (2018). Evaluation of solar-chimney power plants with multiple-angle collectors. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 8(1), 85-96. DOI: https://dx.doi.org/10.22061/jcarme.2017.2282.1213
  • Hu, S., Leung, D. Y., Chan, J. C. (2017). Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy, 120, 1-11. DOI: https://doi.org/10.1016/j.energy.2016.12.098
  • Kashiwa, B.A., Kashiwa, C.B. (2008). The solar cyclone: A solar chimney for harvesting atmospheric water. Energy, 33(2), 331-339. DOI: https://doi.org/10.1016/j.energy.2007.06.003
  • Keshari, S. R., Chandramohan, V. P., Das, P. (2021). A 3D numerical study to evaluate optimum collector inclination angle of Manzanares solar updraft tower power plant. Solar Energy, 226, 455-467. DOI: https://doi.org/10.1016/j.solener.2021.08.062
  • Li, J. Y., Guo, P. H., Wang, Y. (2012). Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renewable Energy, 47, 21-28. DOI: https://doi.org/10.1016/j.renene.2012.03.018
  • Mullett, L.B. (1987). The solar chimney-Overall efficiency, design and performance. International journal of ambient energy, 8(1), 35-40. DOI: https://doi.org/10.1080/01430750.1987.9675512
  • Nasraoui, H., Driss, Z., Kchaou, H. (2020). Effect of the chimney design on the thermal characteristics in solar chimney power plant. Journal of Thermal Analysis and Calorimetry, 140(6), 2721-2732. DOI: https://doi.org/10.1007/s10973-019-09037-3
  • Nizetic, S., Ninic, N., Klarin, B. (2008). Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy, 33(11), 1680-1690. DOI: https://doi.org/10.1016/j.energy.2008.05.012
  • Pasumarthi, N. and Sherif, S.A. (1998a). Experimental and theoretical performance of a demonstration solar chimney model-Part I: mathematical model development. International Journal of Energy Research, 22(3), 277-288. DOI:https://doi.org/10.1002/(SICI)1099-114X(19980310)22:3<277::AID-R380>3.0.CO;2-R
  • Pasumarthi, N. and Sherif, S.A. (1998b). Experimental and theoretical performance of a demonstration solar chimney model-Part II: experimental and theoretical results and economic analysis. International journal of energy research, 22(5), 443-461. DOI: https://doi.org/10.1002/(SICI)1099-114X(199804)22:5<443::AID-ER381>3.0.CO;2-V
  • Schlaich, J., Bergermann, R., Schier W., Weinrebe, G. (2005). Design of commercial solar updraft tower systems utilization of solar induced convective flows for power generation. J Sol Energy Eng, 127(1), 117–24. DOI: https://doi.org/10.1115/1.1823493
  • Sen, H. and Cuce, E. (2020). Dynamic pressure distributions in solar chimney power plants: A numerical research for the pilot plant in Manzanares, Spain. WSSET Newsletter, 12(1), 2-2.
  • Setareh, M. (2021). Comprehensive mathematical study on solar chimney powerplant. Renewable Energy, 175, 470-485. DOI: https://doi.org/10.1016/j.renene.2021.05.017
  • Shahi, D.V.V., Gupta, M.A., Nayak, M.V.S. (2018). CFD Analysis of solar chimney wind power plant by Ansys Fluent. Int J Technol Res Eng, 5(9), 3746-3751.
  • Tayebi, T., Djezzar, M., Gouidmi, H. (2018). 3D numerical study of flow in a solar chimney power plant system. Sciences & Technology, 3(1), 17-20.
  • Toghraie, D., Karami, A., Afrand, M., Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052-1061. DOI: https://doi.org/10.1016/j.energy.2018.08.086
  • Xu, Y., Zhou, X. (2018). Performance of divergent-chimney solar power plants. Solar Energy, 170, 379-387. DOI: https://doi.org/10.1016/j.solener.2018.05.068
  • Yapıcı, E. Ö., Ayli, E., Nsaif, O. (2020). Numerical investigation on the performance of a small scale solar chimney power plant for different geometrical parameters. Journal of Cleaner Production, 276, 122908. DOI: https://doi.org/10.1016/j.jclepro.2020.122908
  • Zandian, A., Ashjaee, M. (2013.) The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy, 51, 465-473. DOI: https://doi.org/10.1016/j.renene.2012.09.051
  • Zhou, X., Yang, J., Xiao, B., Hou, G. (2007) Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering, 27(11-12), 2044-2050. DOI: https://doi.org/10.1016/j.applthermaleng.2006.12.007
  • Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F. (2009). Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering, 29(1), 178-185. DOI: https://doi.org/10.1016/j.applthermaleng.2008.02.014
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Harun Şen 0000-0003-3089-8678

Ayşe Pınar Mert Cüce 0000-0002-6522-7092

Erdem Cüce 0000-0003-0150-4705

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Şen, H., Mert Cüce, A. P., & Cüce, E. (2021). Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 2(2), 83-104. https://doi.org/10.53501/rteufemud.1017909

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025