Research Article
BibTex RIS Cite

Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications

Year 2025, Volume: 29 Issue: 2, 191 - 199, 30.04.2025
https://doi.org/10.16984/saufenbilder.1599129

Abstract

Packaging steels are widely used across a broad range of industries, from food and beverage to chemical products, for the protection, transportation and storage of goods. In this study, the effects of chemical composition and annealing parameters on the phase transformation behavior, microstructure, and mechanical properties of packaging steels were investigated. Two steel samples, Steel A and Steel B, with different chemical compositions (designed according to ASTM A623-22 standard limitations), were prepared using a vacuum induction melting (VIM) furnace. Within the scope of simulation studies, hot rolling, cold rolling, and annealing process simulators were utilized. Before the annealing simulations, the Gleeble 3500 thermal simulation device and JMatPro software were used to determine the process conditions. A light optical microscope (LOM) and a scanning electron microscope (SEM) were used for microstructural characterization studies. Mechanical properties were characterized with tensile tests. Steel A and Steel B samples with different alloying elements and cooling rates were compared to evaluate their suitability for advanced packaging applications. The results of this analysis show that the addition of Nb and Mn to Steel B enhances bainite formation, refines grain size, and improves mechanical properties compared to Steel A.

References

  • E. Gutiérrez-Castañeda, C. Galicia-Ruiz, L. Hernández-Hernández, A. Torres-Castillo, D. F. De Lange, A. Salinas-Rodríguez, “Development of Low-Alloyed Low-Carbon Multiphase Steels under Conditions Similar to Those Used in Continuous Annealing and Galvanizing Lines”, Metals, vol. 12, no. 8, pp. 1818, 2022.
  • S. Keeler, M. Kimchi, P. J. Mooney, “Advanced High-Strength Steels Application Guidelines”, World Auto Steel, version 6.0, 2017
  • S. Kılıç, F. Öztürk, “Recent trends of application of advanced high-strength steels in automotive industry to enhance sustainability”, The 16th International Conference on Machine Design and Production, İzmir, Türkiye, 2014.
  • R. Kuziak, R. Kawalla, S. Waengler, “Advanced High Strength Steels for Automotive Industry”, Archives of Civil and Mechanical Engineering, vol. 8, no. 2, pp. 103–117, 2008.
  • S. C. Ikpeseni, “Review of the Applications, Properties and Processing Parameters of Dual Phase Steels”, Journal of Science and Technology Research, vol. 3, no. 2, pp. 125–139, 2021.
  • ASM International, “Carbon and low-alloyed steels”, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, 2005, pp. 697–707
  • H. Matsuda, T. Kobayashi, Y. Fujimoto, “Cold-Rolled and Galvannealed (GA) Ultra-High Strength Steel Sheets for Automobile Structural Parts”, JFE Technical Report, vol. 24, pp. 20–27, 2019.
  • W. L. Samek, E. De Moor, J. Penning, J. G. Speer, B. C. De Cooman, “Static Strain Aging of Microstructural Constituents in Transformations-Induced-Plasticity Steel”, Metallurgical and Materials Transactions A, vol. 39, no. 10, pp. 2542–54, 2008.
  • S. H. Han, S. H. Choi, J. K. Choi, H. G. Seong, I. B. Kim, “Effect of Hot-Rolling Processing on Texture and r-Value of Annealed Dual-Phase Steels”, Materials Science and Engineering A, vol. 527, pp. 1686–1694, 2010.
  • D. K. Leu, “Prediction of the Limiting Drawing Ratio and the Maximum Drawing Load in Cup Drawing”, International Journal of Machine Tools and Manufacture, vol. 37, no. 2, pp. 201–213, 1997.
  • D. F. Knieps, M. Köhl, M. Merklein, “Drawing Capability of High Formable Packaging Steel: Comparison of Limiting Drawing Ratio and Forming Limit Curve”, Key Engineering Materials, vol. 907, pp. 71–78, 2022.
  • B. V. Salas, M. S. Wiener, J. M. Bastidas, J. R. S. Martínez, G. L. Badilla, “Use of Steel in Food Packaging”, Reference Module in Food Science, 2016.
  • Z. Berk, “Food packaging”, Food Process Engineering and Technology, 3rd ed., Elsevier, 2018, pp. 625–641.
  • G. K. Deshwal, N. R. Panjagari, “Review on Metal Packaging: Materials, Forms, Food Applications”, Journal of Food Science and Technology, vol. 57, pp. 2377–2392, 2020.
  • ASM International, “Surface engineering”, ASM Handbook, Volume 5: Surface Engineering, ASM International, 1994.
  • M. Słowik, P. Cepa, K. Czapla, P. Zabinski, “Steel Packaging Production Process and a Review of New Trends”, Archives of Metallurgy and Materials, vol. 66, pp. 135–143, 2020.
  • ITRA Tinplate Panel, Guide to Tinplate. UK, 2000, pp. 14–41.
  • S. Pandey, K. K. Mishra, P. Ghosh, A. K. Singh, S. K. Jha, “Characterization of Tin-Plated Steel”, Frontiers in Materials, vol. 10, pp. 1113438, 2023.
  • J. Majerníková, E. Spišák, “The Comparison of Properties of Tinplates during Uniaxial and Biaxial Stress”, International Journal of Engineering Science, vol. 5, no. 11, pp. 47–52, 2016.
  • J. R. Davis, Ed., Metallurgy and Material Science. ASM International, 1998.
  • D. Jorge-Badiola, “Advanced Multiphase Steels”, Metals, vol. 13, pp. 1871, 2023.
  • J. Bouquerel, K. Verbeken, B. C. De Cooman, “Microstructure Based Model for the Static Mechanical Behaviour of Multiphase Steels”, Acta Materialia, vol. 54, pp. 1445–56, 2006.
  • A. Gołaszewski, J. Szawłowski, W. Świątnicki, “Multiphase Steel Microstructure and Properties Optimisation through a New Heat Treatment Process”, Materials Science and Technology, vol. 37, no. 1, pp. 1–7, 2021.
  • A. Grajcar, W. Kwaśny, “Microstructural Study on Retained Austenite in Advanced High-Strength Multiphase 3Mn-1.5Al and 5Mn-1.5Al Steels”, Journal of Achievements in Materials and Manufacturing Engineering, vol. 55, pp. 168–177, 2012.
  • ASTM A623-22, Standard Specification for Tin Mill Products, General Requirements, 2022.
  • X. F. Zheng, L. H. Liao, Y. L. Kang, W. Liu, Q. Q. Qiu, “The Effect of Chemical Composition and Processing Technology on the Microstructure, Texture, and Earing Behavior of DR Tinplate”, Journal of Materials Engineering and Performance, vol. 28, pp. 485–497, 2019.
  • B. P. Tian, L. H. Liao, G. Zhu, Y. Kang, “Effect of Secondary Cold Reduction Rates on Microstructure, Texture, and Earing Behavior of Double Reduction Tinplate”, Materials, vol. 14, no. 14, pp. 2335, 2021.
  • C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design”, Annual Review of Materials Research, vol. 45, pp. 391–431, 2015.
  • M. Maleki, H. Mirzadeh, M. Zamani, “Effect of Intercritical Annealing on Mechanical Properties and Work-Hardening Response of High Formability Dual Phase Steel”, Steel Research International, vol. 89, no. 4, pp. 1700412, 2018.
  • J. Ayres, D. Penney, P. Evans, “Effect of Intercritical Annealing on the Mechanical Properties of Dual-Phase Steel”, Ironmaking & Steelmaking, vol. 49, no. 6, pp. 821–827, 2022.
  • A. Contreras, A. López, E. J. Gutiérrez, “An Approach for the Design of Multiphase Advanced High-Strength Steels Based on the Behavior of CCT Diagrams Simulated from the Intercritical Temperature Range”, Materials Science and Engineering A, vol. 772, pp. 138708, 2020.
  • ISO 6892-1, Metallic materials - Tensile testing, Part 1: Method of test at room temperature.
  • A. G. Kalashami, A. Kermanpur, Y. Najafizadeh, A. Mazaheri, “Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures”, Materials Science and Engineering A, vol. 658, pp. 355-366, 2015.
  • W. Bleck, A. Frehn, J. Ohlert, “Niobium in Dual Phase and TRIP Steels”, Department of Ferrous Metallurgy, Aachen Univ. Technol., Aachen, Germany, 2016.
  • J. W. Morris Jr., “The influence of grain size on the mechanical properties of steel”, Lawrence Berkeley National Laboratory, 2001.
  • A. Kostryzhev, et al., “Comparative effect of Mo and Cr on microstructure and mechanical properties in NbV-microalloyed bainitic steels”, Metals, vol. 8, p. 134, 2018.
  • G. Krauss, “Strengthening mechanisms in steels”, Encyclopedia of Materials: Science and Technology, 2nd ed., K. H. Jürgen Buschow, Oxford: Elsevier, 2001, pp. 8870–8881.

Ambalaj Çeliğine Yönelik Yeni Yaklaşımlar

Year 2025, Volume: 29 Issue: 2, 191 - 199, 30.04.2025
https://doi.org/10.16984/saufenbilder.1599129

Abstract

Ambalaj çelikleri, gıda ve içecekten kimyasal ürünlere kadar geniş bir yelpazede ürünlerin korunması, taşınması ve depolanması amacıyla birçok sektörde yaygın olarak kullanılmaktadır. Bu çalışmada, ambalaj çeliklerinin faz dönüşüm davranışı, mikro yapısı ve mekanik özellikleri üzerindeki kimyasal kompozisyon ve tavlama parametrelerinin etkileri incelenmiştir. ASTM A623-22 standardına uygun olarak, farklı kimyasal bileşimlere sahip iki farklı numune (Steel A ve Steel B), vakum indüksiyon ergitme (VIM) fırını kullanılarak üretilmiştir. Simülasyon çalışmaları kapsamında sıcak haddeleme, soğuk haddeleme ve tavlama simülatörleri kullanılmıştır. Tavlama simülasyonlarından önce, proses koşullarını belirlemek amacıyla Gleeble 3500 termal simülasyon cihazı ve JMatPro yazılımı kullanılmıştır. Mikroyapı karakterizasyon çalışmaları için ışık optik mikroskobu (LOM) ve taramalı elektron mikroskobu (SEM) ile incelenmiştir. Mekanik özellikler ise çekme testleri ile değerlendirilmiştir. İleri ambalaj uygulamaları için uygunluklarını değerlendirmek amacıyla, farklı alaşım elementlerine ve soğutma hızlarına sahip Steel A ve Steel B numuneleri karşılaştırılmıştır. Analiz sonuçları, Steel B’ye Nb ve Mn ilavesinin beynit oluşumunu desteklediğini, tane boyutunu küçülttüğünü ve mekanik özellikleri Steel A’ya kıyasla geliştirdiğini göstermektedir.

References

  • E. Gutiérrez-Castañeda, C. Galicia-Ruiz, L. Hernández-Hernández, A. Torres-Castillo, D. F. De Lange, A. Salinas-Rodríguez, “Development of Low-Alloyed Low-Carbon Multiphase Steels under Conditions Similar to Those Used in Continuous Annealing and Galvanizing Lines”, Metals, vol. 12, no. 8, pp. 1818, 2022.
  • S. Keeler, M. Kimchi, P. J. Mooney, “Advanced High-Strength Steels Application Guidelines”, World Auto Steel, version 6.0, 2017
  • S. Kılıç, F. Öztürk, “Recent trends of application of advanced high-strength steels in automotive industry to enhance sustainability”, The 16th International Conference on Machine Design and Production, İzmir, Türkiye, 2014.
  • R. Kuziak, R. Kawalla, S. Waengler, “Advanced High Strength Steels for Automotive Industry”, Archives of Civil and Mechanical Engineering, vol. 8, no. 2, pp. 103–117, 2008.
  • S. C. Ikpeseni, “Review of the Applications, Properties and Processing Parameters of Dual Phase Steels”, Journal of Science and Technology Research, vol. 3, no. 2, pp. 125–139, 2021.
  • ASM International, “Carbon and low-alloyed steels”, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, 2005, pp. 697–707
  • H. Matsuda, T. Kobayashi, Y. Fujimoto, “Cold-Rolled and Galvannealed (GA) Ultra-High Strength Steel Sheets for Automobile Structural Parts”, JFE Technical Report, vol. 24, pp. 20–27, 2019.
  • W. L. Samek, E. De Moor, J. Penning, J. G. Speer, B. C. De Cooman, “Static Strain Aging of Microstructural Constituents in Transformations-Induced-Plasticity Steel”, Metallurgical and Materials Transactions A, vol. 39, no. 10, pp. 2542–54, 2008.
  • S. H. Han, S. H. Choi, J. K. Choi, H. G. Seong, I. B. Kim, “Effect of Hot-Rolling Processing on Texture and r-Value of Annealed Dual-Phase Steels”, Materials Science and Engineering A, vol. 527, pp. 1686–1694, 2010.
  • D. K. Leu, “Prediction of the Limiting Drawing Ratio and the Maximum Drawing Load in Cup Drawing”, International Journal of Machine Tools and Manufacture, vol. 37, no. 2, pp. 201–213, 1997.
  • D. F. Knieps, M. Köhl, M. Merklein, “Drawing Capability of High Formable Packaging Steel: Comparison of Limiting Drawing Ratio and Forming Limit Curve”, Key Engineering Materials, vol. 907, pp. 71–78, 2022.
  • B. V. Salas, M. S. Wiener, J. M. Bastidas, J. R. S. Martínez, G. L. Badilla, “Use of Steel in Food Packaging”, Reference Module in Food Science, 2016.
  • Z. Berk, “Food packaging”, Food Process Engineering and Technology, 3rd ed., Elsevier, 2018, pp. 625–641.
  • G. K. Deshwal, N. R. Panjagari, “Review on Metal Packaging: Materials, Forms, Food Applications”, Journal of Food Science and Technology, vol. 57, pp. 2377–2392, 2020.
  • ASM International, “Surface engineering”, ASM Handbook, Volume 5: Surface Engineering, ASM International, 1994.
  • M. Słowik, P. Cepa, K. Czapla, P. Zabinski, “Steel Packaging Production Process and a Review of New Trends”, Archives of Metallurgy and Materials, vol. 66, pp. 135–143, 2020.
  • ITRA Tinplate Panel, Guide to Tinplate. UK, 2000, pp. 14–41.
  • S. Pandey, K. K. Mishra, P. Ghosh, A. K. Singh, S. K. Jha, “Characterization of Tin-Plated Steel”, Frontiers in Materials, vol. 10, pp. 1113438, 2023.
  • J. Majerníková, E. Spišák, “The Comparison of Properties of Tinplates during Uniaxial and Biaxial Stress”, International Journal of Engineering Science, vol. 5, no. 11, pp. 47–52, 2016.
  • J. R. Davis, Ed., Metallurgy and Material Science. ASM International, 1998.
  • D. Jorge-Badiola, “Advanced Multiphase Steels”, Metals, vol. 13, pp. 1871, 2023.
  • J. Bouquerel, K. Verbeken, B. C. De Cooman, “Microstructure Based Model for the Static Mechanical Behaviour of Multiphase Steels”, Acta Materialia, vol. 54, pp. 1445–56, 2006.
  • A. Gołaszewski, J. Szawłowski, W. Świątnicki, “Multiphase Steel Microstructure and Properties Optimisation through a New Heat Treatment Process”, Materials Science and Technology, vol. 37, no. 1, pp. 1–7, 2021.
  • A. Grajcar, W. Kwaśny, “Microstructural Study on Retained Austenite in Advanced High-Strength Multiphase 3Mn-1.5Al and 5Mn-1.5Al Steels”, Journal of Achievements in Materials and Manufacturing Engineering, vol. 55, pp. 168–177, 2012.
  • ASTM A623-22, Standard Specification for Tin Mill Products, General Requirements, 2022.
  • X. F. Zheng, L. H. Liao, Y. L. Kang, W. Liu, Q. Q. Qiu, “The Effect of Chemical Composition and Processing Technology on the Microstructure, Texture, and Earing Behavior of DR Tinplate”, Journal of Materials Engineering and Performance, vol. 28, pp. 485–497, 2019.
  • B. P. Tian, L. H. Liao, G. Zhu, Y. Kang, “Effect of Secondary Cold Reduction Rates on Microstructure, Texture, and Earing Behavior of Double Reduction Tinplate”, Materials, vol. 14, no. 14, pp. 2335, 2021.
  • C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, D. Raabe, “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design”, Annual Review of Materials Research, vol. 45, pp. 391–431, 2015.
  • M. Maleki, H. Mirzadeh, M. Zamani, “Effect of Intercritical Annealing on Mechanical Properties and Work-Hardening Response of High Formability Dual Phase Steel”, Steel Research International, vol. 89, no. 4, pp. 1700412, 2018.
  • J. Ayres, D. Penney, P. Evans, “Effect of Intercritical Annealing on the Mechanical Properties of Dual-Phase Steel”, Ironmaking & Steelmaking, vol. 49, no. 6, pp. 821–827, 2022.
  • A. Contreras, A. López, E. J. Gutiérrez, “An Approach for the Design of Multiphase Advanced High-Strength Steels Based on the Behavior of CCT Diagrams Simulated from the Intercritical Temperature Range”, Materials Science and Engineering A, vol. 772, pp. 138708, 2020.
  • ISO 6892-1, Metallic materials - Tensile testing, Part 1: Method of test at room temperature.
  • A. G. Kalashami, A. Kermanpur, Y. Najafizadeh, A. Mazaheri, “Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures”, Materials Science and Engineering A, vol. 658, pp. 355-366, 2015.
  • W. Bleck, A. Frehn, J. Ohlert, “Niobium in Dual Phase and TRIP Steels”, Department of Ferrous Metallurgy, Aachen Univ. Technol., Aachen, Germany, 2016.
  • J. W. Morris Jr., “The influence of grain size on the mechanical properties of steel”, Lawrence Berkeley National Laboratory, 2001.
  • A. Kostryzhev, et al., “Comparative effect of Mo and Cr on microstructure and mechanical properties in NbV-microalloyed bainitic steels”, Metals, vol. 8, p. 134, 2018.
  • G. Krauss, “Strengthening mechanisms in steels”, Encyclopedia of Materials: Science and Technology, 2nd ed., K. H. Jürgen Buschow, Oxford: Elsevier, 2001, pp. 8870–8881.
There are 37 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Ramazan Uzun 0000-0002-7148-4044

Ümran Başkaya This is me 0000-0002-9638-5798

Yasemin Kılıç This is me 0000-0001-7579-5424

Early Pub Date April 15, 2025
Publication Date April 30, 2025
Submission Date December 10, 2024
Acceptance Date March 12, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Uzun, R., Başkaya, Ü., & Kılıç, Y. (2025). Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications. Sakarya University Journal of Science, 29(2), 191-199. https://doi.org/10.16984/saufenbilder.1599129
AMA Uzun R, Başkaya Ü, Kılıç Y. Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications. SAUJS. April 2025;29(2):191-199. doi:10.16984/saufenbilder.1599129
Chicago Uzun, Ramazan, Ümran Başkaya, and Yasemin Kılıç. “Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications”. Sakarya University Journal of Science 29, no. 2 (April 2025): 191-99. https://doi.org/10.16984/saufenbilder.1599129.
EndNote Uzun R, Başkaya Ü, Kılıç Y (April 1, 2025) Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications. Sakarya University Journal of Science 29 2 191–199.
IEEE R. Uzun, Ü. Başkaya, and Y. Kılıç, “Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications”, SAUJS, vol. 29, no. 2, pp. 191–199, 2025, doi: 10.16984/saufenbilder.1599129.
ISNAD Uzun, Ramazan et al. “Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications”. Sakarya University Journal of Science 29/2 (April 2025), 191-199. https://doi.org/10.16984/saufenbilder.1599129.
JAMA Uzun R, Başkaya Ü, Kılıç Y. Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications. SAUJS. 2025;29:191–199.
MLA Uzun, Ramazan et al. “Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications”. Sakarya University Journal of Science, vol. 29, no. 2, 2025, pp. 191-9, doi:10.16984/saufenbilder.1599129.
Vancouver Uzun R, Başkaya Ü, Kılıç Y. Effect of Chemical Composition and Annealing Parameters for Advanced Packaging Steel Applications. SAUJS. 2025;29(2):191-9.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .