Research Article
BibTex RIS Cite

Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width

Year 2025, Volume: 29 Issue: 2, 171 - 179, 30.04.2025
https://doi.org/10.16984/saufenbilder.1625576

Abstract

This study investigates the fabrication of single and double-row lattice beams utilizing three distinct lattice structures: cubic, octet, and body-centered cubic (BCC), using Tough-PLA filament. This material exhibits similar plastic deformation characteristics to traditional PLA filament but possesses superior strength. Mechanical properties of the bulk Tough-PLA filament were evaluated through standard tensile testing. Subsequently, to assess the influence of lattice configuration and beam width, the single and double-row beams were subjected to three-point bending tests. The experimental data were analyzed in terms of specific energy absorption, crush force efficiency, and specific force value, allowing for comparisons with existing literature to identify the most effective parameters. The findings indicate that the octet lattice structure, featuring angled struts, is the most efficient design as beam thickness increases. Conversely, for single-row beams with narrower widths, the BCC lattice—with both vertical and angled struts—emerges as the optimal design. Additionally, cubic lattices consistently displayed the least favorable performance due to their reliance on vertical struts across all beam widths examined.

References

  • A. Mustafa, B. Aloyaydi, S. Sivasankaran, F. Al-Mufadi, "Mechanical properties enhancement in composite material structures of poly‐lactic acid/epoxy/milled glass fibers prepared by fused filament fabrication and solution casting", Polymer Composites, vol. 42, no. 12, p. 6847-6866, 2021.
  • P. Egan, N. Khatri, M. Parab, A. Arefin, "Mechanics of 3-d printed polymer lattices with varied design and processing strategies", Polymers, vol. 14, no. 24, p. 5515, 2022.
  • R. Sala, S. Regondi, R. Pugliese, "Design data and finite element analysis of 3d printed poly(ε-caprolactone)-based lattice scaffolds: Influence of type of unit cell, porosity, and nozzle diameter on the mechanical behavior", Eng—advances in Engineering, vol. 3, no. 1, p. 9-23, 2021.
  • P. Egan, X. Wang, H. Greutert, K. Shea, K. Wuertz‐Kozak, S. Ferguson, "Mechanical and biological characterization of 3-D printed lattices", 3-D Printing and Additive Manufacturing, vol. 6, no. 2, p. 73-81, 2019.
  • R. Hasan, N. A. Rosli, S. Mat, M. R. Alkahari, "Failure behaviour of 3-D printed ABS lattice structure under compression", International Journal of Engineering and Advanced Technology, vol. 9, no. 3, p. 3908-3912, 2020.
  • P. Egan, K. Shea, S. Ferguson, "Simulated tissue growth for 3-D printed scaffolds", Biomechanics and Modeling in Mechanobiology, vol. 17, no. 5, p. 1481-1495, 2018.
  • M. Tatari, S. Kamrava, R. Ghosh, H. Nayeb-Hashemi, A. Vaziri, "Bending behavior of biomimetic scale covered beam with tunable stiffness scales", Scientific Reports, vol. 10, no. 1, 2020.
  • L. Zhu, S. Cao, X. Zhang, L. Li, "Bending failure behavior of the glass fiber reinforced composite i-beams formed by a novel bending pultrusion processing technique", Autex Research Journal, vol. 22, no. 2, p. 172-176, 2022.
  • S. Carvalho, T. Panzera, A. Christofóro, J. Fiorelli, F. Lahr, R. Freire, "Epoxy mortar timber beam upgrading", International Wood Products Journal, vol. 8, no. 3, p. 146-154, 2017.
  • N. Benzannache, A. Bezazi, H. Bouchelaghem, M. Boumaaza, F. Scarpa, S. Amziane, "Effects of adding sisal and glass fibers on the mechanical behaviour of concrete polymer", Journal of Building Materials and Structures, vol. 5, no. 1, p. 86-94, 2018.
  • A. Catangiu, D. Ungureanu, A. Poinescu, I. Gurgu, "Experimental device with data acquisition for measurement of temperature of deflection under load", Scientific Bulletin of Valahia University - Materials and Mechanics, vol. 19, no. 20, p. 31-37, 2023.
  • M. Corradi, L. Righetti, A. Borri, "Bond strength of composite CFRP reinforcing bars in timber", Materials, vol. 8, no. 7, p. 4034-4049, 2015.
  • D. Miura, T. Miyasaka, H. Aoki, Y. Aoyagi, Y. Ishida, "Correlations among bending test methods for dental hard resins", Dental Materials Journal, vol. 36, no. 4, p. 491-496, 2017.
  • M. Bastiurea, M. Rodeanu, D. Dima, M. Murarescu, G. Andrei, "Evaluation of mechanical properties of polyester composite with graphene and graphite through three-point bending test", Applied Mechanics and Materials, vol. 659, p. 22-27, 2014.
  • Y. Gong, J. Yang, X. He, X. Lyu, & H. Liu, "Structural design calculation of basalt fiber polymer-modified RPC beams subjected to four-point bending", Polymers, vol. 13, no. 19, p. 3261, 2021.
  • N. Dang, "A third-order shear deformation theory for bending behaviors of rotating FGM beams resting on elastic foundation with geometrical imperfections in thermal environments", Mathematical Problems in Engineering, vol. 2021, p. 1-19, 2021.
  • C. Wu, J. Duan, Z. Yang, Z. Zhao, Y. Xu, "A novel rectangular-section combined beam of welded thin-walled h-shape steel/camphor pine wood: The bending performance study", Sustainability, vol. 15, no. 9, p. 7450, 2023.
  • Y. Wang, J. Han, R. Huo, H. Fang, J. Chen, W. Liu, "The flexural behaviour of composite sandwich beams with a lattice-web reinforced wood core", Advances in Structural Engineering, vol. 25, no. 12, p. 2496-2507, 2022.
  • E. Cuan-Urquizo, A. Bhaskar, "Flexural elasticity of woodpile lattice beams", European Journal of Mechanics - A/Solids, vol. 67, p. 187-199, 2018.
  • P. Sinha T. Mukhopadhyay, "On-demand contactless programming of nonlinear elastic moduli in hard magnetic soft beam based broadband active lattice materials", Smart Materials and Structures, vol. 32, no. 5, p. 055021, 2023.
  • F. Zhang, W. Liu, L. Wang, Q. Yao, D. Zhou, H. Fang, "Flexural behavior of hybrid composite beams with a bamboo layer and lattice ribs", Journal of Reinforced Plastics and Composites, vol. 34, no. 7, p. 521-533, 2015.
  • M. F. Kahraman, S. İriç, K. Genel, “Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study”, Engineering Failure Analysis, vol. 157, p. 107963, 2024.
  • M. M. Yalçın, “Flexural behavior of 3D-printed carbon fiber-reinforced nylon lattice beams”, Polymers, vol. 16, no. 21, p. 2991, Oct. 2024.

3D Yöntemiyle Üretilmiş Though-PLA Kafes Kirişlerin Eğme Yükü Altındaki Davranışı

Year 2025, Volume: 29 Issue: 2, 171 - 179, 30.04.2025
https://doi.org/10.16984/saufenbilder.1625576

Abstract

Bu çalışmada, Tough-PLA filamenti kullanılarak kübik, oktet ve yüzey merkezli kübik (BCC) olmak üzere üç farklı kafes yapısı kullanılarak tek ve çift sıralı kafes kirişlerin üretimi araştırılmaktadır. Bu malzeme, geleneksel PLA filamentine benzer plastik deformasyon özellikleri sergilemekte ancak üstün mukavemete sahiptir. Tough-PLA filamentinin mekanik özellikleri standart çekme testi ile değerlendirilmiştir. Daha sonra, kafes konfigürasyonunun ve kiriş genişliğinin etkisini değerlendirmek için, tek ve çift sıralı kirişler üç nokta eğme testlerine tabi tutulmuştur. Deneysel veriler, spesifik enerji emilimi, ezilme kuvveti verimliliği ve spesifik kuvvet değeri açısından analiz edilmiş ve en etkili parametreleri belirlemek için mevcut literatürle karşılaştırmalar yapılmıştır. Bulgular, kiriş kalınlığı arttıkça, açılı ayrıtlar içeren oktet kafes yapının en verimli tasarım olduğunu göstermektedir. Buna karşılık, daha dar genişliğe sahip tek sıralı kirişler için, hem dikey hem de açılı ayrıtlara sahip BCC kafes kiriş en uygun tasarım olarak ortaya çıkmaktadır. Ayrıca, kübik kafes kirişler, incelenen tüm kiriş genişliklerinde dikey desteklere dayanmaları nedeniyle en verimsiz performansı sergilemiştir.

References

  • A. Mustafa, B. Aloyaydi, S. Sivasankaran, F. Al-Mufadi, "Mechanical properties enhancement in composite material structures of poly‐lactic acid/epoxy/milled glass fibers prepared by fused filament fabrication and solution casting", Polymer Composites, vol. 42, no. 12, p. 6847-6866, 2021.
  • P. Egan, N. Khatri, M. Parab, A. Arefin, "Mechanics of 3-d printed polymer lattices with varied design and processing strategies", Polymers, vol. 14, no. 24, p. 5515, 2022.
  • R. Sala, S. Regondi, R. Pugliese, "Design data and finite element analysis of 3d printed poly(ε-caprolactone)-based lattice scaffolds: Influence of type of unit cell, porosity, and nozzle diameter on the mechanical behavior", Eng—advances in Engineering, vol. 3, no. 1, p. 9-23, 2021.
  • P. Egan, X. Wang, H. Greutert, K. Shea, K. Wuertz‐Kozak, S. Ferguson, "Mechanical and biological characterization of 3-D printed lattices", 3-D Printing and Additive Manufacturing, vol. 6, no. 2, p. 73-81, 2019.
  • R. Hasan, N. A. Rosli, S. Mat, M. R. Alkahari, "Failure behaviour of 3-D printed ABS lattice structure under compression", International Journal of Engineering and Advanced Technology, vol. 9, no. 3, p. 3908-3912, 2020.
  • P. Egan, K. Shea, S. Ferguson, "Simulated tissue growth for 3-D printed scaffolds", Biomechanics and Modeling in Mechanobiology, vol. 17, no. 5, p. 1481-1495, 2018.
  • M. Tatari, S. Kamrava, R. Ghosh, H. Nayeb-Hashemi, A. Vaziri, "Bending behavior of biomimetic scale covered beam with tunable stiffness scales", Scientific Reports, vol. 10, no. 1, 2020.
  • L. Zhu, S. Cao, X. Zhang, L. Li, "Bending failure behavior of the glass fiber reinforced composite i-beams formed by a novel bending pultrusion processing technique", Autex Research Journal, vol. 22, no. 2, p. 172-176, 2022.
  • S. Carvalho, T. Panzera, A. Christofóro, J. Fiorelli, F. Lahr, R. Freire, "Epoxy mortar timber beam upgrading", International Wood Products Journal, vol. 8, no. 3, p. 146-154, 2017.
  • N. Benzannache, A. Bezazi, H. Bouchelaghem, M. Boumaaza, F. Scarpa, S. Amziane, "Effects of adding sisal and glass fibers on the mechanical behaviour of concrete polymer", Journal of Building Materials and Structures, vol. 5, no. 1, p. 86-94, 2018.
  • A. Catangiu, D. Ungureanu, A. Poinescu, I. Gurgu, "Experimental device with data acquisition for measurement of temperature of deflection under load", Scientific Bulletin of Valahia University - Materials and Mechanics, vol. 19, no. 20, p. 31-37, 2023.
  • M. Corradi, L. Righetti, A. Borri, "Bond strength of composite CFRP reinforcing bars in timber", Materials, vol. 8, no. 7, p. 4034-4049, 2015.
  • D. Miura, T. Miyasaka, H. Aoki, Y. Aoyagi, Y. Ishida, "Correlations among bending test methods for dental hard resins", Dental Materials Journal, vol. 36, no. 4, p. 491-496, 2017.
  • M. Bastiurea, M. Rodeanu, D. Dima, M. Murarescu, G. Andrei, "Evaluation of mechanical properties of polyester composite with graphene and graphite through three-point bending test", Applied Mechanics and Materials, vol. 659, p. 22-27, 2014.
  • Y. Gong, J. Yang, X. He, X. Lyu, & H. Liu, "Structural design calculation of basalt fiber polymer-modified RPC beams subjected to four-point bending", Polymers, vol. 13, no. 19, p. 3261, 2021.
  • N. Dang, "A third-order shear deformation theory for bending behaviors of rotating FGM beams resting on elastic foundation with geometrical imperfections in thermal environments", Mathematical Problems in Engineering, vol. 2021, p. 1-19, 2021.
  • C. Wu, J. Duan, Z. Yang, Z. Zhao, Y. Xu, "A novel rectangular-section combined beam of welded thin-walled h-shape steel/camphor pine wood: The bending performance study", Sustainability, vol. 15, no. 9, p. 7450, 2023.
  • Y. Wang, J. Han, R. Huo, H. Fang, J. Chen, W. Liu, "The flexural behaviour of composite sandwich beams with a lattice-web reinforced wood core", Advances in Structural Engineering, vol. 25, no. 12, p. 2496-2507, 2022.
  • E. Cuan-Urquizo, A. Bhaskar, "Flexural elasticity of woodpile lattice beams", European Journal of Mechanics - A/Solids, vol. 67, p. 187-199, 2018.
  • P. Sinha T. Mukhopadhyay, "On-demand contactless programming of nonlinear elastic moduli in hard magnetic soft beam based broadband active lattice materials", Smart Materials and Structures, vol. 32, no. 5, p. 055021, 2023.
  • F. Zhang, W. Liu, L. Wang, Q. Yao, D. Zhou, H. Fang, "Flexural behavior of hybrid composite beams with a bamboo layer and lattice ribs", Journal of Reinforced Plastics and Composites, vol. 34, no. 7, p. 521-533, 2015.
  • M. F. Kahraman, S. İriç, K. Genel, “Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study”, Engineering Failure Analysis, vol. 157, p. 107963, 2024.
  • M. M. Yalçın, “Flexural behavior of 3D-printed carbon fiber-reinforced nylon lattice beams”, Polymers, vol. 16, no. 21, p. 2991, Oct. 2024.
There are 23 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Articles
Authors

Yasin Kuddusi Kutucu 0000-0002-5948-8915

Muhammet Muaz Yalçın 0000-0003-4818-7591

Early Pub Date April 15, 2025
Publication Date April 30, 2025
Submission Date January 23, 2025
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Kutucu, Y. K., & Yalçın, M. M. (2025). Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width. Sakarya University Journal of Science, 29(2), 171-179. https://doi.org/10.16984/saufenbilder.1625576
AMA Kutucu YK, Yalçın MM. Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width. SAUJS. April 2025;29(2):171-179. doi:10.16984/saufenbilder.1625576
Chicago Kutucu, Yasin Kuddusi, and Muhammet Muaz Yalçın. “Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width”. Sakarya University Journal of Science 29, no. 2 (April 2025): 171-79. https://doi.org/10.16984/saufenbilder.1625576.
EndNote Kutucu YK, Yalçın MM (April 1, 2025) Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width. Sakarya University Journal of Science 29 2 171–179.
IEEE Y. K. Kutucu and M. M. Yalçın, “Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width”, SAUJS, vol. 29, no. 2, pp. 171–179, 2025, doi: 10.16984/saufenbilder.1625576.
ISNAD Kutucu, Yasin Kuddusi - Yalçın, Muhammet Muaz. “Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width”. Sakarya University Journal of Science 29/2 (April 2025), 171-179. https://doi.org/10.16984/saufenbilder.1625576.
JAMA Kutucu YK, Yalçın MM. Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width. SAUJS. 2025;29:171–179.
MLA Kutucu, Yasin Kuddusi and Muhammet Muaz Yalçın. “Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width”. Sakarya University Journal of Science, vol. 29, no. 2, 2025, pp. 171-9, doi:10.16984/saufenbilder.1625576.
Vancouver Kutucu YK, Yalçın MM. Three-Point Bending Behavior of 3D-Printed Tough-PLA Lattice Beams: Effects of Lattice Topology and Beam Width. SAUJS. 2025;29(2):171-9.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .