Research Article
BibTex RIS Cite

Comparison of Muscle Responses and Movement Kinematics in Maximal Exercises Performed on a Kayak Ergometer with a Fixed Seat and a Seat with Balance Apparatus

Year 2024, Volume: 35 Issue: 2, 90 - 101, 23.08.2024
https://doi.org/10.17644/sbd.1428298

Abstract

This study aimed to compare the muscle responses in a maximal exercise performed on a balance apparatus and a fixed seat kayak ergometer, using both forearm and oblique region muscle activations and kinematic data of both arms. Twelve active male athletes (aged 15-18) with no injuries that would hinder the study and had at least two years of canoeing experience participated in the research voluntarily (height 175.6±4.4cm, weight 77.6±9.8 kg). Ethics Committee Approval was received from Sakarya University of Applied Sciences Ethics for the study. After the standard warm-up routine, a 500-meter maximal exercise was performed on the Dansprint canoe ergometer with a fixed seat or balance apparatus in random order. sEMG and IMU data were recorded with electrodes placed on the flexor carpi radialis (FKR) and right and left obliqus externus abdominis (OEA) muscles on the right and left forearm. Wilcoxon signed-rank test was used to compare test time, tempo, sEMGOrt, sEMGInt, pAngle and AngleInt values. The results indicated that the test duration, tempo, and total number of rowings were similar, and there was no general difference between the angular kinematic parameters except the total angular displacement value of the pitch axis. While it was observed that the participants tended to show higher muscle activation in the test performed on the fixed-seat ergometer, it was determined that there was a statistically significant difference only between the mean values of sEMGort and sEMGInt in the left arm (p<0.05). No findings have supported the idea that the activation of the oblique region muscles would increase, especially in exercises performed with a seat with a balance apparatus. We believe it is important to consider that ergometers equipped with balance apparatus or fixed seats might influence the test results when evaluating performance on ergometer tests.

References

  • 1. Barbero, M., Merletti, R., and Rainoldi, A. (2012). Atlas of muscle ınnervation zones. Springer Milan. https://doi.org/10.1007/978-88-470-2463-2
  • 2. Begon, M., Colloud, F., and Sardain, P. (2010). Lower limb contribution in kayak performance: modelling, simulation and analysis. Multibody System Dynamics, 23(4), 387–400. https://doi.org/10.1007/s11044-010-9189-8
  • 3. Borges, T. O., Bullock, N., Aitken, D., and Coutts, A. J. (2017). Accuracy and validity of commercially available kayak ergometers. International Journal of Sports Physiology and Performance, 12(9), 1267–1270. https://doi.org/10.1123/ijspp.2016-0653
  • 4. Campagna, P.D., Brien, D., Holt, L.E., Alexander, A.B. and Greenberger, H. (1982). A biomechanical comparison of Olympic flatwater kayaking and a dry-land kayak ergometer. Canadian Journal of Applied Sport Sciences, 7, 242.
  • 5. Colloud, F., Bahuaud, P., Doriot, N., Champely, S., and Chèze, L. (2006). Fixed versus free-floating stretcher mechanism in rowing ergometers: Mechanical aspects. Journal of Sports Sciences, 24(5), 479–493. https://doi.org/10.1080/02640410500189256
  • 6. Crotty, E. D., Furlong, L.-A. M., Hayes, K., and Harrison, A. J. (2021). Onset detection in surface electromyographic signals across isometric explosive and ramped contractions: a comparison of computer-based methods. Physiological Measurement, 42(3), 035010. https://doi.org/10.1088/1361-6579/abef56
  • 7. DalMonte A., and Faina M., M. C. (1988). Sport-spectific ergometric equipment. In A. Shepard R. (Ed.), Endurance in sports (pp. 201–207). Blackwell Scientific Pub.
  • 8. Demir, A. (2020). Durgunsu kanoya özgü denge antrenmanlarının dinamik denge üzerine etkisi. Spor Eğitim Dergisi, 4(1), 145–151. https://dergipark.org.tr/tr/pub/seder/issue/52104/703851
  • 9. Elliott, B., Lyttle, A., and Birkett, O. (2002). Rowing. Sports Biomechanics, 1(2), 123–134. https://doi.org/10.1080/14763140208522791
  • 10. Fleming, N., Donne, B., Fletcher, D., and Mahony, N. (2012). A biomechanical assessment of ergometer task specificity in elite flatwater kayakers. Journal of Sports Science & Medicine, 11(1), 16–25. http://www.ncbi.nlm.nih.gov/pubmed/24149118
  • 11. Goodway, J. D., Ozmun, J. C., and Gallahue, D. L. (2019). Understanding motor development: Infants, children, adolescents, adults. Jones \& Bartlett Learning. https://books.google.com.tr/books?id=h5KwDwAAQBAJ
  • 12. Hartmann, U., Mader, A., Wasser, K., and Klauer, I. (1993). Peak force, velocity, and power during five and ten maximal rowing ergometer strokes by world class female and male rowers. International Journal of Sports Medicine, 14(S 1), S42–S45. https://doi.org/10.1055/s-2007-1021224
  • 13. Hawkins, D. (2000). A new instrumentation system for training rowers. Journal of Biomechanics, 33(2), 241–245. https://doi.org/10.1016/S0021-9290(99)00139-6
  • 14. Klitgaard, K. K., Hauge, C., Oliveira, A. S., and Heinen, F. (2021). A kinematic comparison of on-ergometer and on-water kayaking. European Journal of Sport Science, 21(10), 1375–1384. https://doi.org/10.1080/17461391.2020.1831617
  • 15. Logan, S. M., and Holt, L. E. (1985). Sports performance series: The flatwater kayak stroke. Strength & Conditioning Journal, 7(5). https://journals.lww.com/nsca-scj/fulltext/1985/10000/sports_performance_series__the_flatwater_kayak.1.aspx
  • 16. MacFarlane, D. J., Edmond, I. M., and Walmsley, A. (1997). Instrumentation of an ergometer to monitor the reliability of rowing performance. Journal of Sports Sciences, 15(2), 167–173. https://doi.org/10.1080/026404197367434
  • 17. Mahony, N. (1999). A comparison of physiological responses to rowing on friction-loaded and air-braked ergometers. Journal of Sports Sciences, 17(2), 143–149. https://doi.org/10.1080/026404199366244
  • 18. Michael, J. S., Smith, R., and Rooney, K. (2010). Physiological responses to kayaking with a swivel seat. International Journal of Sports Medicine, 31(08), 555–560. https://doi.org/10.1055/s-0030-1252053
  • 19. Németh, Á. L., Kiss, R., and Aradi, P. (2013). Effect of kayaking on balancing ability after sudden changes in direction. Biomechanica Hungarica. https://doi.org/10.17489/biohun/2013/1/30
  • 20. Pudlo, P., Barbier, F., and Angue, J. C. (1996). Instrumentation of the Concept II ergometer for optimization of the gesture of the rower. In S. Haake (Ed.), The Engineering of Sport: Proceedings of the International Conference on the Engineering of Sport (pp. 137–140).
  • 21. Secher, N. H. (1993). Physiological and biomechanical aspects of rowing. Sports Medicine, 15(1), 24–42. https://doi.org/10.2165/00007256-199315010-00004
  • 22. Steinacker, J. M. (1993). Physiological aspects of training in rowing. International Journal of Sports Medicine, 14 Suppl 1, S3-10. http://www.ncbi.nlm.nih.gov/pubmed/8262704
  • 23. Torres-Moreno, R., Tanaka, C., and Penney, K. L. (2000). Joint excursion, handle velocity, and applied force: A biomechanical analysis of ergonometric rowing. International Journal of Sports Medicine, 21(1), 41–44. https://doi.org/10.1055/s-2000-8850
  • 24. von Someren, K. A., Phillips, G. R. W., and Palmer, G. S. (2000). Comparison of physiological responses to open water kayaking and kayak ergometry. International Journal of Sports Medicine, 21(3), 200–204. https://doi.org/10.1055/s-2000-8877
  • 25. Woollacott, M. H., Shumway-Cook, A., and Nashner, L. M. (1986). Aging and posture control: Changes in sensory organization and muscular coordination. The International Journal of Aging and Human Development, 23(2), 97–114. https://doi.org/10.2190/VXN3-N3RT-54JB-X16X

Kano Ergometresinde Sabit Oturakla ve Denge Aparatlı Oturakla Gerçekleştirilen Maksimal Egzersizlerde Kas Yanıtları ve Hareket Kinematiğinin Karşılaştırılması

Year 2024, Volume: 35 Issue: 2, 90 - 101, 23.08.2024
https://doi.org/10.17644/sbd.1428298

Abstract

Bu çalışmada denge aparatlı oturaklı ve sabit oturaklı kano ergometresinde gerçekleştirilen maksimal bir egzersizde verilen kas yanıtlarının, her iki ön kol ve oblik bölge kas aktivasyonları ve her iki kola ait kinematik veriler kullanılarak karşılaştırılması amaçlanmıştır. Araştırmaya, çalışmaya engel teşkil edecek bir sakatlığı olmayan, yaşları 15-18 arasında ve en az 2 yıl kano sporunda geçmişi olan 12 erkek aktif sporcu gönüllü olarak katılmışlardır (boy 175,6±4,4cm, kilo 77,6±9,8 kg). Çalışma için Sakarya Uygulamalı Bilimler Üniversitesi Etik Kurulu'ndan Etik Kurul Onayı alınmıştır. Standart ısınma rutini sonrasında, rastgele sırayla sabit oturaklı ya da denge aparatlı Dansprint kano ergometresinde 500m mesafe ile maksimal egzersiz gerçekleştirilmiştir. Sağ ve sol ön kolda fleksör carpi radialis (FKR) ve sağ ve sol obliqus externus abdominis (OEA) kaslarına yerleştirilen elektrotlar ile sEMG ve IMU verileri kaydedilmiştir. Test süresi, tempo, toplam kürek sayısı, sEMGOrt, sEMGInt, pAçı ve AçıInt değerlerinin karşılaştırılmasında Wilcoxon işaretli sıralar testi kullanılmıştır. Sonuç olarak; test süresi, tempo ve toplam kürek sayısının benzer olduğu, açısal kinematik parametreler arasında pitch ekseni toplam açısal yer değiştirme değeri dışında genel anlamda farklılık olmadığı gözlenmiştir. Sabit oturaklı ergometrede gerçekleştirilen testte katılımcıların daha yüksek kas aktivasyonu gösterme eğiliminde oldukları gözlenirken sadece sol kol sEMGOrt ve sEMGInt ortalama değerleri arasında istatistiksel olarak anlamlı bir fark oluştuğu belirlenmiştir (p<0,05). Denge aparatlı oturak ile gerçekleştirilen egzersizde, özellikle oblik bölge kaslarının daha fazla aktivasyon göstereceği ile ilgili düşünceyi destekleyecek bulgulara ulaşılamamıştır. Performans değerlendirmek amacıyla ergometrelerde gerçekleştirilen testlerde denge aparatlı oturak ya da sabit oturaklı ergometrelerin test sonuçlarını etkileyebileceğinin dikkate alınmasının önemli olduğu kanaatindeyiz.

Supporting Institution

Sakarya Uygulamalı Bilimler Üniversitesi, Egzersiz ve Spor Bilimleri Eğitim, Uygulama ve Araştırma Merkezi

References

  • 1. Barbero, M., Merletti, R., and Rainoldi, A. (2012). Atlas of muscle ınnervation zones. Springer Milan. https://doi.org/10.1007/978-88-470-2463-2
  • 2. Begon, M., Colloud, F., and Sardain, P. (2010). Lower limb contribution in kayak performance: modelling, simulation and analysis. Multibody System Dynamics, 23(4), 387–400. https://doi.org/10.1007/s11044-010-9189-8
  • 3. Borges, T. O., Bullock, N., Aitken, D., and Coutts, A. J. (2017). Accuracy and validity of commercially available kayak ergometers. International Journal of Sports Physiology and Performance, 12(9), 1267–1270. https://doi.org/10.1123/ijspp.2016-0653
  • 4. Campagna, P.D., Brien, D., Holt, L.E., Alexander, A.B. and Greenberger, H. (1982). A biomechanical comparison of Olympic flatwater kayaking and a dry-land kayak ergometer. Canadian Journal of Applied Sport Sciences, 7, 242.
  • 5. Colloud, F., Bahuaud, P., Doriot, N., Champely, S., and Chèze, L. (2006). Fixed versus free-floating stretcher mechanism in rowing ergometers: Mechanical aspects. Journal of Sports Sciences, 24(5), 479–493. https://doi.org/10.1080/02640410500189256
  • 6. Crotty, E. D., Furlong, L.-A. M., Hayes, K., and Harrison, A. J. (2021). Onset detection in surface electromyographic signals across isometric explosive and ramped contractions: a comparison of computer-based methods. Physiological Measurement, 42(3), 035010. https://doi.org/10.1088/1361-6579/abef56
  • 7. DalMonte A., and Faina M., M. C. (1988). Sport-spectific ergometric equipment. In A. Shepard R. (Ed.), Endurance in sports (pp. 201–207). Blackwell Scientific Pub.
  • 8. Demir, A. (2020). Durgunsu kanoya özgü denge antrenmanlarının dinamik denge üzerine etkisi. Spor Eğitim Dergisi, 4(1), 145–151. https://dergipark.org.tr/tr/pub/seder/issue/52104/703851
  • 9. Elliott, B., Lyttle, A., and Birkett, O. (2002). Rowing. Sports Biomechanics, 1(2), 123–134. https://doi.org/10.1080/14763140208522791
  • 10. Fleming, N., Donne, B., Fletcher, D., and Mahony, N. (2012). A biomechanical assessment of ergometer task specificity in elite flatwater kayakers. Journal of Sports Science & Medicine, 11(1), 16–25. http://www.ncbi.nlm.nih.gov/pubmed/24149118
  • 11. Goodway, J. D., Ozmun, J. C., and Gallahue, D. L. (2019). Understanding motor development: Infants, children, adolescents, adults. Jones \& Bartlett Learning. https://books.google.com.tr/books?id=h5KwDwAAQBAJ
  • 12. Hartmann, U., Mader, A., Wasser, K., and Klauer, I. (1993). Peak force, velocity, and power during five and ten maximal rowing ergometer strokes by world class female and male rowers. International Journal of Sports Medicine, 14(S 1), S42–S45. https://doi.org/10.1055/s-2007-1021224
  • 13. Hawkins, D. (2000). A new instrumentation system for training rowers. Journal of Biomechanics, 33(2), 241–245. https://doi.org/10.1016/S0021-9290(99)00139-6
  • 14. Klitgaard, K. K., Hauge, C., Oliveira, A. S., and Heinen, F. (2021). A kinematic comparison of on-ergometer and on-water kayaking. European Journal of Sport Science, 21(10), 1375–1384. https://doi.org/10.1080/17461391.2020.1831617
  • 15. Logan, S. M., and Holt, L. E. (1985). Sports performance series: The flatwater kayak stroke. Strength & Conditioning Journal, 7(5). https://journals.lww.com/nsca-scj/fulltext/1985/10000/sports_performance_series__the_flatwater_kayak.1.aspx
  • 16. MacFarlane, D. J., Edmond, I. M., and Walmsley, A. (1997). Instrumentation of an ergometer to monitor the reliability of rowing performance. Journal of Sports Sciences, 15(2), 167–173. https://doi.org/10.1080/026404197367434
  • 17. Mahony, N. (1999). A comparison of physiological responses to rowing on friction-loaded and air-braked ergometers. Journal of Sports Sciences, 17(2), 143–149. https://doi.org/10.1080/026404199366244
  • 18. Michael, J. S., Smith, R., and Rooney, K. (2010). Physiological responses to kayaking with a swivel seat. International Journal of Sports Medicine, 31(08), 555–560. https://doi.org/10.1055/s-0030-1252053
  • 19. Németh, Á. L., Kiss, R., and Aradi, P. (2013). Effect of kayaking on balancing ability after sudden changes in direction. Biomechanica Hungarica. https://doi.org/10.17489/biohun/2013/1/30
  • 20. Pudlo, P., Barbier, F., and Angue, J. C. (1996). Instrumentation of the Concept II ergometer for optimization of the gesture of the rower. In S. Haake (Ed.), The Engineering of Sport: Proceedings of the International Conference on the Engineering of Sport (pp. 137–140).
  • 21. Secher, N. H. (1993). Physiological and biomechanical aspects of rowing. Sports Medicine, 15(1), 24–42. https://doi.org/10.2165/00007256-199315010-00004
  • 22. Steinacker, J. M. (1993). Physiological aspects of training in rowing. International Journal of Sports Medicine, 14 Suppl 1, S3-10. http://www.ncbi.nlm.nih.gov/pubmed/8262704
  • 23. Torres-Moreno, R., Tanaka, C., and Penney, K. L. (2000). Joint excursion, handle velocity, and applied force: A biomechanical analysis of ergonometric rowing. International Journal of Sports Medicine, 21(1), 41–44. https://doi.org/10.1055/s-2000-8850
  • 24. von Someren, K. A., Phillips, G. R. W., and Palmer, G. S. (2000). Comparison of physiological responses to open water kayaking and kayak ergometry. International Journal of Sports Medicine, 21(3), 200–204. https://doi.org/10.1055/s-2000-8877
  • 25. Woollacott, M. H., Shumway-Cook, A., and Nashner, L. M. (1986). Aging and posture control: Changes in sensory organization and muscular coordination. The International Journal of Aging and Human Development, 23(2), 97–114. https://doi.org/10.2190/VXN3-N3RT-54JB-X16X
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Biomechanics in Sports Science
Journal Section Articles
Authors

Murat Çilli 0000-0002-9027-363X

Furkan Uluköylü 0009-0007-8615-5458

Onur Çakır 0000-0001-7625-5067

Publication Date August 23, 2024
Submission Date March 4, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 35 Issue: 2

Cite

APA Çilli, M., Uluköylü, F., & Çakır, O. (2024). Kano Ergometresinde Sabit Oturakla ve Denge Aparatlı Oturakla Gerçekleştirilen Maksimal Egzersizlerde Kas Yanıtları ve Hareket Kinematiğinin Karşılaştırılması. Spor Bilimleri Dergisi, 35(2), 90-101. https://doi.org/10.17644/sbd.1428298

26830


HACETTEPE JOURNAL OF SPORT SCIENCES


Copyright © Hacettepe University Faculty of Sport Sciences