Research Article
BibTex RIS Cite

YBO3 Fosforunun Termolüminesans Dozimetrik Pikinin Kinetik Parametreleri

Year 2020, Volume: 15 Issue: 1, 100 - 109, 31.05.2020
https://doi.org/10.29233/sdufeffd.705417

Abstract

Bu çalışmanın amacı, katkısız itriyum borat (YBO3) fosforunun termolüminesans (TL) kinetik parametrelerini belirlemektir. Yanma reaksiyonu ile sentezlenen YBO3 fosforu pelet formuna getirilerek TL ölçümleri gerçekleştirilmiştir. Örnekler, 0,1-5 Gy aralığında beta dozuna maruz bırakılarak 2°C/s’lik sabit hızla oda sıcaklığından 500°C’ye kadar ısıtılmıştır. Örneğe ait TL ışıma eğrileri, hem farklı dozlar hem de farklı ısıtma hızları için elde edilmiştir. Elde edilen TL sinyalleri analiz edilerek 210°C’de merkezlenen TL dozimetrik pikinin tuzak parametrelerinin hesaplanması için mevcut pik şekli (PS), farklı ısıtma hızları (VHR) ve ışıma eğrisi ayrıştırma (GCD) metotları kullanılmıştır. Farklı dozlarda sergilenen TL pikine Chen’in PS metodu uygulandığında ortalama aktivasyon enerjisi (E) 0,847 eV, frekans faktörü (s) 107 s-1 mertebesinde bulunmuştur. İki farklı VHR metodu kullanılarak elde edilen E ve s değerleri, biri için sırasıyla 1,050 ± 0,05 eV ve 109 ± 103 s-1 mertebesinde diğeri için 0,890 eV ve 108 s-1 mertebesinde bulunmuştur. GCD metodu R-studio programının ‘‘tgcd’’ paketi kullanılarak uygulanmıştır. Ayrıştırma, 0,5 ve 5 Gy beta dozlarından elde edilen pik maksimuma uygulanmış ve 1. dereceden kinetiğe uyan iki pikten oluştuğu görülmüştür. Ayrıştırılmış piklerin (pik 1) E değerleri sırasıyla 0,889 ve 0,868 eV olarak bulunurken s değerleri ise her ikisi için de 108 s-1 mertebelerinde bulunmuştur.

Thanks

Bu çalışma süresi boyunca yaptığı her türlü bilimsel katkılarından dolayı Çukurova Üniversitesi Fizik Bölümü öğretim üyesi Prof. Dr. Mustafa Topaksu’ya ve malzeme hazırlama sürecindeki katkılarından dolayı Çukurova Üniversitesi Seramik Bölümü öğretim üyesi Dr. Y. Ziya Halefoğlu’na en içten teşekkürlerimi sunarım.

References

  • [1] A. N. Yazici, M. Dogan, V. E. Kafadar, and H. Toktamis, “Thermoluminescence of undoped and Ce-doped BaB4O7,” Nucl. Instrum. Methods Phys. Res., B 246 (2), 402–408, 2006.
  • [2] T. Dogan, L. Tormo, S. Akca, N. Kucuk, J. Garcia Guinea, Y. Karabulut, M. Ayvacikli, M. Oglakci, M. Topaksu, and N. Can, “Cathodoluminescence and thermoluminescence of ZnB2O4:Eu3+ phosphors prepared via wet-chemical synthesis,” Ceram. Int., 45, 4918–4925, 2019.
  • [3] T. N. Khamaganova, T. G. Khumaeva, A. K. Subanakov, and A. V. Perevalov, “Synthesis and thermoluminescence properties of CdB4O7:Tb3+ and CdB4O7:Mn2+”. Inorg. Mater., 53, 81-85, 2017.
  • [4] V. Pagonis, N. Brown, G.S. Polymeris, and G. Kitis, “Comprehensive analysis of thermoluminescence signals in MgB4O7:Dy,Na dosimeter,” J. Lumin., 213, 334-342, 2019.
  • [5] R. Balakrishnaiah, Yi. S. Soo, K. Jang, S. Ho Lee, B.K. Moon, and J.H. Jeong, “Enhanced luminescence properties of YBO3:Eu3+ phosphors by Li-doping,” Mater. Res. Bull. 46, 621–626, 2011.
  • [6] R. G. Nair, S. Nigam, V. Sudarsan, R. K. Vatsa, and V. K. Jain, “YBO3 versus Y3BO6 host on Tb3+ luminescence,” J. Lumin., 195, 271–277, 2018.
  • [7] L. J. Q. Maia, A. L. Mourab, J. Vladimir, Cid B. de Araújo, “Structural properties and near infrared photoluminescence of Nd3+ doped YBO3 nanocrystals,” Opt. Mater., 95, 109227, 2019.
  • [8] V. Dubey, J. Kaur, S. Agrawal, N.S. Suryanarayana, K.V.R. Murthy, “Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3:Eu3+ phosphor,” Superlattice Microst., 67, 156–171, 2014.
  • [9] V. Dubey, N. V. Dubey, S. J. Dhoble, and H. C. Swart, “TL glow curve analysis and kinetics of UV, β and γ irradiated YBO3: Eu3+ and Y2O3: Eu3+ phosphors,” J. Mater. Sci: Mater. Electron., 28, 13565–13578, 2017.
  • [10] R. Chen, V. Pagonis, J. L. Lawless, “Evaluated thermoluminescence trapping parameters-What do they really mean?,” Radiat. Meas., 91, 21-27, 2016.
  • [11] G.F.J. Garlick, A.F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc., 60 (6), 574-590, 1948.
  • [12] R. Chen and S.A.A. Winer, “Effects of heating rates on glow curves,” J. Appl. Phys., 41, 52227–55232, 1970.
  • [13] W. Hoogenstraaten, “Electron Traps in Zinc Sulphide Phospors,” Philips Res. Repts., 13, 515-693, 1958.
  • [14] A.H. Booth, “Calculation of electron trap depths from thermoluminescence maxima,” Canad. J. Chem., 32, 214-215, 1954.
  • [15] A .Bohun, “Thermoemission und photoemission von Natriumchlorid,” Czech. J. Phys. 4, 91-93, 1954.
  • [16] I. A. Parfianovich, “On the determination of the energy depth of capture levels in crystal phosphors,” J. Exp. Theor. Phys., SSSR 26, 696-703, 1954.
  • [17] R. Chen, S. W .S. McKeever, Theory of Thermoluminescence and Related Phenomena, Singapore: World Scientific, 1997, pp. 272.
  • [18] S. Akça, Z. G. Portakal, T. Dogan, N. Kucuk, A. Canimoglu, M. Topaksu, N. Can, “Thermoluminescence properties of Tb doped Mg2SiO4 after beta irradiation,” Nucl. Instrum. Methods Phys. Res., B 458, 12–20, 2019.
  • [19] Y. Z. Halefoglu, “Luminescent properties and characterisation of LaB3O6:Eu3+ phosphor synthesized using the combustion method,” Appl. Radiat. Isot., 148, 40–44, 2019.
  • [20] C. Furetta, Handbook of Thermoluminescence, World Scientific publishing Co. Pre.Ltd., 2003, pp. 260-263, pp. 440, pp.435
  • [21] R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Processes. New York: Pergamon Publishing Co. Pvt. Ltd., 1981, pp. 162.
  • [22] S. W. S. McKeever, Thermoluminescence of Solids, Cambridge: Cambridge Univ. Press., 1985, pp. 90-92.
  • [23] G. Kitis, and J.W.N. Tuyn, “A simple method to correct for the temperature lag in TL glow-curve measurements,” J. Phys. D Appl. Phys., 31, 2065–2073, 1998.
  • [24] J. Peng, Z. Dong and F. Han, “tgcd: An R package for analyzing thermoluminescence glow curves,” SoftwareX , 5, 112–120, 2016.
  • [25] S. W. S. McKeever, M. Moscovitch, and P. D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses, Ashford, United Kingdom: Nuclear Technology Publishing, 1995, pp. 63-66.
  • [26] Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO:Pr3+,” Mater. Sci. Eng. B, 178(18), 1205-1211, 2013.

Kinetic Parameters of Thermoluminescence Dosimetric Peak of YBO3 Phosphor

Year 2020, Volume: 15 Issue: 1, 100 - 109, 31.05.2020
https://doi.org/10.29233/sdufeffd.705417

Abstract

The aim of this study is to determine the thermoluminescence (TL) kinetic parameters of pure yttrium borate (YBO3) phosphor. The YBO3 phosphor synthesized by combustion reaction was converted into pellet form and TL measurements were made. The samples exposed to the beta dose in the range of 0.1-5 Gy were heated from room temperature to 500°C at a constant rate of 2°C/s. TL glow curves of the sample were obtained for both different doses and various heating rates. The current peak shape (PS), various heating rates (VHR) and glow curve deconvolution (GCD) methods were used to calculate the trap parameters of the TL dosimetric peak centered at 210°C by analyzing the obtained TL signals. When Chen's PS method was applied to TL peak displayed in different doses, the average activation energy (E) and frequency factor (s) were found to be 0.847 eV and in the order of 107 s-1. The E and s values obtained using two different VHR methods were 1.050 ± 0.05 eV and in the order of 109 ± 103 s-1 for one and 0.890 eV and in the order of 108 s-1 for the other. The GCD method was applied using the 'tgcd' package of the R-studio program. As a result of applying deconvolution to the peak maximum obtained in beta doses of 0.5 and 5 Gy, two peaks matching the 1st order kinetics were obtained. The E values of the deconvolved peaks (peak 1) were found as 0.889 and 0.868 eV whereas the s values were in the order of 108 s-1.

References

  • [1] A. N. Yazici, M. Dogan, V. E. Kafadar, and H. Toktamis, “Thermoluminescence of undoped and Ce-doped BaB4O7,” Nucl. Instrum. Methods Phys. Res., B 246 (2), 402–408, 2006.
  • [2] T. Dogan, L. Tormo, S. Akca, N. Kucuk, J. Garcia Guinea, Y. Karabulut, M. Ayvacikli, M. Oglakci, M. Topaksu, and N. Can, “Cathodoluminescence and thermoluminescence of ZnB2O4:Eu3+ phosphors prepared via wet-chemical synthesis,” Ceram. Int., 45, 4918–4925, 2019.
  • [3] T. N. Khamaganova, T. G. Khumaeva, A. K. Subanakov, and A. V. Perevalov, “Synthesis and thermoluminescence properties of CdB4O7:Tb3+ and CdB4O7:Mn2+”. Inorg. Mater., 53, 81-85, 2017.
  • [4] V. Pagonis, N. Brown, G.S. Polymeris, and G. Kitis, “Comprehensive analysis of thermoluminescence signals in MgB4O7:Dy,Na dosimeter,” J. Lumin., 213, 334-342, 2019.
  • [5] R. Balakrishnaiah, Yi. S. Soo, K. Jang, S. Ho Lee, B.K. Moon, and J.H. Jeong, “Enhanced luminescence properties of YBO3:Eu3+ phosphors by Li-doping,” Mater. Res. Bull. 46, 621–626, 2011.
  • [6] R. G. Nair, S. Nigam, V. Sudarsan, R. K. Vatsa, and V. K. Jain, “YBO3 versus Y3BO6 host on Tb3+ luminescence,” J. Lumin., 195, 271–277, 2018.
  • [7] L. J. Q. Maia, A. L. Mourab, J. Vladimir, Cid B. de Araújo, “Structural properties and near infrared photoluminescence of Nd3+ doped YBO3 nanocrystals,” Opt. Mater., 95, 109227, 2019.
  • [8] V. Dubey, J. Kaur, S. Agrawal, N.S. Suryanarayana, K.V.R. Murthy, “Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3:Eu3+ phosphor,” Superlattice Microst., 67, 156–171, 2014.
  • [9] V. Dubey, N. V. Dubey, S. J. Dhoble, and H. C. Swart, “TL glow curve analysis and kinetics of UV, β and γ irradiated YBO3: Eu3+ and Y2O3: Eu3+ phosphors,” J. Mater. Sci: Mater. Electron., 28, 13565–13578, 2017.
  • [10] R. Chen, V. Pagonis, J. L. Lawless, “Evaluated thermoluminescence trapping parameters-What do they really mean?,” Radiat. Meas., 91, 21-27, 2016.
  • [11] G.F.J. Garlick, A.F. Gibson, “The electron trap mechanism of luminescence in sulphide and silicate phosphors,” Proc. Phys. Soc., 60 (6), 574-590, 1948.
  • [12] R. Chen and S.A.A. Winer, “Effects of heating rates on glow curves,” J. Appl. Phys., 41, 52227–55232, 1970.
  • [13] W. Hoogenstraaten, “Electron Traps in Zinc Sulphide Phospors,” Philips Res. Repts., 13, 515-693, 1958.
  • [14] A.H. Booth, “Calculation of electron trap depths from thermoluminescence maxima,” Canad. J. Chem., 32, 214-215, 1954.
  • [15] A .Bohun, “Thermoemission und photoemission von Natriumchlorid,” Czech. J. Phys. 4, 91-93, 1954.
  • [16] I. A. Parfianovich, “On the determination of the energy depth of capture levels in crystal phosphors,” J. Exp. Theor. Phys., SSSR 26, 696-703, 1954.
  • [17] R. Chen, S. W .S. McKeever, Theory of Thermoluminescence and Related Phenomena, Singapore: World Scientific, 1997, pp. 272.
  • [18] S. Akça, Z. G. Portakal, T. Dogan, N. Kucuk, A. Canimoglu, M. Topaksu, N. Can, “Thermoluminescence properties of Tb doped Mg2SiO4 after beta irradiation,” Nucl. Instrum. Methods Phys. Res., B 458, 12–20, 2019.
  • [19] Y. Z. Halefoglu, “Luminescent properties and characterisation of LaB3O6:Eu3+ phosphor synthesized using the combustion method,” Appl. Radiat. Isot., 148, 40–44, 2019.
  • [20] C. Furetta, Handbook of Thermoluminescence, World Scientific publishing Co. Pre.Ltd., 2003, pp. 260-263, pp. 440, pp.435
  • [21] R. Chen and Y. Kirsh, Analysis of Thermally Stimulated Processes. New York: Pergamon Publishing Co. Pvt. Ltd., 1981, pp. 162.
  • [22] S. W. S. McKeever, Thermoluminescence of Solids, Cambridge: Cambridge Univ. Press., 1985, pp. 90-92.
  • [23] G. Kitis, and J.W.N. Tuyn, “A simple method to correct for the temperature lag in TL glow-curve measurements,” J. Phys. D Appl. Phys., 31, 2065–2073, 1998.
  • [24] J. Peng, Z. Dong and F. Han, “tgcd: An R package for analyzing thermoluminescence glow curves,” SoftwareX , 5, 112–120, 2016.
  • [25] S. W. S. McKeever, M. Moscovitch, and P. D. Townsend, Thermoluminescence Dosimetry Materials: Properties and Uses, Ashford, United Kingdom: Nuclear Technology Publishing, 1995, pp. 63-66.
  • [26] Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO:Pr3+,” Mater. Sci. Eng. B, 178(18), 1205-1211, 2013.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Sibel Akça 0000-0001-8827-9242

Publication Date May 31, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

IEEE S. Akça, “YBO3 Fosforunun Termolüminesans Dozimetrik Pikinin Kinetik Parametreleri”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 1, pp. 100–109, 2020, doi: 10.29233/sdufeffd.705417.