Research Article
BibTex RIS Cite

Electric Field Responsive Smart Fluids from Olive Pulp Powder

Year 2024, Volume: 19 Issue: 2, 127 - 143, 25.11.2024
https://doi.org/10.29233/sdufeffd.1451712

Abstract

This study aims to evaluate one of the wastes of the olive oil industry, olive pulp powder (OP), due to its consisting of mainly polarizable lignocellulosic biomass, as a dispersed phase in electric field-responsive (ER) fluid whose rheological properties can be tuned by an externally applied electric field (E). The supplied OP was extracted with n-hexane, and structural and thermal analysis revealed the removal of residual oil and soluble small molecules. The OP and n-hexane treated-OP (h-OP) were dispersed in silicon oil (SO), and their rheological and dielectric properties, and dispersion stabilities were investigated. According to the flow test results, the yield stresses (τy) of both dispersions increased with increasing concentration and the E. The τy of the OP/SO and h-OP/SO dispersions (25 wt%) under E=3.5 kV/mm increased 29 and 130 times greater than their τy values under no E, respectively. The dielectric spectrum analysis showed that enhanced interfacial polarization and decreased nonpolarized forces after the n-hexane extraction improved the ER response of the h-OP/SO dispersion. The enhanced dispersion stability (90%) was determined for h-OP/SO dispersion at 25 wt%. As a result, the h-OP could be a sustainable candidate for evaluation as a dispersing phase of ER fluids for vibration-damping systems.

References

  • F. P. La Mantia, M. Morreale, “Green composites: A brief review”, Composites Part A: Applied Science and Manufacturing, 42(6), 579-588, 2011.
  • N. M. Kuznetsov, V. V. Kovaleva, S. I. Belousov, S. N. Chvalun, “Electrorheological fluids: From historical retrospective to recent trends”, Materials Today Chemistry, 26,101066, 2022.
  • K. Zhang, H. J. Choi, “Smart polymer/carbon nanotube nanocomposites and their electrorheological response”, Materials, 7(5), 3399-3414, 2014.
  • V. I. Kordonsky, E. V. Korobko, T. G. Lazareva, “Electrorheological polymer‐based suspensions”, Journal of Rheology, 35(7), 1427-1439, 1991.
  • Y. G. Ko, S. S. Shin, U. S. Choi, Y. S. Park, J. W. Woo, “Gelation of chitin and chitosan dispersed suspensions under electric field: Effect of degree of deacetylation”, ACS Applied Materials & Interfaces, 3(4), 1289-1298, 2011.
  • Y. G. Ko, H. J. Lee, S. S. Shin, U. S. Choi, “Dipolar-molecule complexed chitosan carboxylate, phosphate, and sulphate dispersed electrorheological suspensions”, Soft Matter, 8(23), 6273-6279, 2012.
  • N. M. Kuznetsov, Y. D. Zagoskin, A. Y. Vdovichenko, A. V. Bakirov, R. A. Kamyshinsky, A. P. Istomina, T. E. Grigoriev, S. N. Chvalun, “Enhanced electrorheological activity of porous chitosan particles”, Carbohydrate Polymers, 256, 117530, 2021.
  • K. Negita, H. Itou, T. Yakou, “Electrorheological effect in suspension composed of starch powder and silicone oil”, Journal of Colloid and Interface Science, 209(1), 251-254, 1999.
  • J. H. Sung, D. P. Park, B. J. Park, H. J. Choi, M. S. Jhon, “Phosphorylation of potato starch and its electrorheological suspension”, Biomacromolecules, 6(4), 2182-2188, 2005.
  • M. Yavuz, T. Tilki, C. Karabacak, O. Erol, H. I. Unal, M. Uluturk, M. Cabuk, “Electrorheological behavior of biodegradable modified corn starch/corn oil suspensions”, Carbohydrate Polymers, 79(2), 318-324, 2010.
  • Y. G. Ko, H. J. Lee, Y. J. Chun, U. S. Choi, K. P. Yoo, “Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field”, ACS Applied Materials & Interfaces, 5(3), 1122-1130, 2013.
  • B. Sim, D. H. Bae, H. J. Choi, K. Choi, M. S. Islam, N. Kao, “Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields”, Cellulose, 23(1), 185-197, 2016.
  • D. H. Bae, H. J. Choi, K. Choi, J. D. Nam, M. S. Islam, N. Kao, “Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response”, Carbohydrate Polymers, 165, 247-254, 2017.
  • S. H. Kwon, I. H. Park, C. M. Vu, H. J. Choi, “Fabrication and electro-responsive electrorheological characteristics of rice husk-based nanosilica suspension”, Journal of the Taiwan Institute of Chemical Engineers, 95, 432-437, 2019.
  • Y. Chun, Y. G. Ko, T. Do, Y. Jung, S. W. Kim, U. Su Choi, “Spent coffee grounds: Massively supplied carbohydrate polymer applicable to electrorheology”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 392-401, 2019.
  • P. Otero, P. Garcia-Oliveira, M. Carpena, M. Barral-Martinez, F. Chamorro, J. Echave, P. Garcia-Perez, H. Cao, J. Xiao, J. Simal-Gandara, M. A. Prieto, “Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies”, Trends in Food Science & Technology, 116, 1084-1104, 2021.
  • G. Espadas-Aldana, P. Guaygua-Amaguaña, C. Vialle, J.-P. Belaud, P. Evon, C. Sablayrolles, “Life cycle assessment of olive pomace as a reinforcement in polypropylene and polyethylene biocomposite materials: A new perspective for the valorization of this agricultural by-product”, Coatings, 11(5), 525, 2021.
  • M. Volpe, D. Wüst, F. Merzari, M. Lucian, G. Andreottola, A. Kruse, L. Fiori, “One stage olive mill waste streams valorisation via hydrothermal carbonisation”, Waste Management, 80, 224-234, 2018.
  • S. Sismanoglu, U. Tayfun, C.-M. Popescu, Y. Kanbur, “Effective use of olive pulp as biomass additive for eco-grade TPU-based composites using functional surface modifiers”, Biomass Conversion and Biorefinery, 13, 12303-12318, 2023.
  • M. J. Pancholi, A. Khristi, K. M Athira, D. Bagchi, “Comparative analysis of lignocellulose agricultural waste and pre-treatment conditions with FTIR and machine learning modeling”, BioEnergy Research, 16(1), 123-137, 2023.
  • H. M. Boundzanga, B. Cagnon, M. Roulet, S. de Persis, C. Vautrin-Ul, S. Bonnamy, “Contributions of hemicellulose, cellulose, and lignin to the mass and the porous characteristics of activated carbons produced from biomass residues by phosphoric acid activation”, Biomass Conversion and Biorefinery, 12(8), 3081-3096, 2022.
  • A. I. Martı́n Garcı́a, A. Moumen, D. R. Yáñez Ruiz, E. Molina Alcaide, “Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves”, Animal Feed Science and Technology, 107(1), 61-74, 2003.
  • V. Benavente, A. Fullana, “Torrefaction of olive mill waste”, Biomass and Bioenergy, 73, 186-194, 2015.
  • S. Lammi, A. Barakat, C. Mayer-Laigle, D. Djenane, N. Gontard, H. Angellier-Coussy, “Dry fractionation of olive pomace as a sustainable process to produce fillers for biocomposites”, Powder Technology, 326, 44-53, 2018.
  • R. Font, M. D. Rey, “Kinetics of olive oil pyrolysis”, Journal of Analytical and Applied Pyrolysis, 103, 181-188, 2013.
  • M. Wzorek, R. Junga, E. Yilmaz, B. Bozhenko, “Thermal decomposition of olive-mill byproducts: A tg-ftir approach”, Energies, 14(14), 4123, 2021.
  • T. Akar, I. Tosun, Z. Kaynak, E. Ozkara, O. Yeni, E. N. Sahin, S. T. Akar, “An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace”, Journal of Hazardous Materials, 166(2), 1217-1225, 2009.
  • Y. Z. Dong, H. M. Kim, H. J. Choi, “Conducting polymer-based electro-responsive smart suspensions”, Chemical Papers, 75(10), 5009-5034, 2021.
  • J. K. Jung, Y. I. Moon, G. H. Kim, N. H. Tak, “Characterization of dielectric relaxation process by impedance spectroscopy for polymers: Nitrile butadiene rubber and ethylene propylene diene monomer”, Journal of Spectroscopy, 2020, 8815492, 2020.
  • S. Havriliak, S. Negami, “A complex plane analysis of α-dispersions in some polymer systems”, Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117, 1966.
  • N. M. Kuznetsov, V. V. Kovaleva, A. Y. Vdovichenko, S. N. Chvalun, “Natural electrorheological fluids based on cellulose particles in olive oil: The filler size effect”, Colloid Journal, 85(3), 408-417, 2023.
  • M. Hasanin, A. M. Labeeb, “Dielectric properties of nicotinic acid/methyl cellulose composite via “green” method for anti-static charge applications”, Materials Science and Engineering: B, 263,114797, 2021.
  • O. Erol, H. I. Unal, “Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: The effect of anisotropy”, RSC Advances, 5(125), 103159-103171, 2015.
  • G. T. Ngatu, N. M. Wereley, J. O. Karli, R. C. Bell, “Dimorphic magnetorheological fluids: Exploiting partial substitution of microspheres by nanowires”, Smart Materials and Structures, 17(4), 045022, 2008.
  • E. C. Bingham, Fluidity and Plasticity, New York, McGraw-Hill Book Company, Inc., 440 pages, 1922.
  • D. D. Ké, G. Turcotte, “Viscosity of biomaterials”, Chemical Engineering Communications, 6(4-5), 273-282, 1980.
  • W. H. Herschel, R. Bulkley, “Konsistenzmessungen von gummi-benzollösungen”, Kolloid-Zeitschrift, 39(4), 291-300, 1926.
  • M. S. Cho, H. J. Choi, M. S. Jhon, “Shear stress analysis of a semiconducting polymer based electrorheological fluid system”, Polymer, 46(25), 11484-11488, 2005.
  • Y. P. Seo, Y. Seo, “Modeling and analysis of electrorheological suspensions in shear flow”, Langmuir, 28(6), 3077-3084, 2012.
  • L. I. Linzhi, G. A. O. Shujuan, “Polyaniline (PANI) and BaTiO3 composite nanotube with high suspension performance in electrorheological fluid”, Materials Today Communications, 24, 100993, 2020.
  • J.-Y. Hong, M. Choi, C. Kim, J. Jang, “Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials”, Journal of Colloid and Interface Science, 347(2), 177-182, 2010.
  • N. M. Kuznetsov, Y. D. Zagoskin, A. V. Bakirov, A. Y. Vdovichenko, S. N. Malakhov, A. P. Istomina, S. N. Chvalun, “Is chitosan the promising candidate for filler in nature-friendly electrorheological fluids?”, ACS Sustainable Chemistry & Engineering, 9(10), 3802-3810, 2021.
  • S. Y. Oh, T. J. Kang, “Electrorheological response of inorganic-coated multi-wall carbon nanotubes with core–shell nanostructure”, Soft Matter, 10(21), 3726-3737, 2014.
  • M. A. Delgado-Canto, S. D. Fernández-Silva, C. Roman, M. García-Morales, “On the electro-active control of nanocellulose-based functional biolubricants”, ACS Applied Materials & Interfaces, 12(41), 46490-46500, 2020.
  • B. Zhang, Y. Chen, H. Zheng, C. Li, L. Ma, H. Zhang, B. Wang, C. Hao, “Composites of co-doped graphitic C3N4 nanosheets and TiO2 nanoparticles for electrorheological fluid applications”, ACS Applied Nano Materials, 5(1), 1003-1015, 2022.
  • J. Liu, X. Wen, Z. Liu, Y. Tan, S. Yang, P. Zhang, “Electrorheological performances of poly(o-toluidine) and p-toluenesulfonic acid doped poly(o-toluidine) suspensions”, Colloid and Polymer Science, 293(5), 1391-1400, 2015.
  • V. V. Kovaleva, N. M. Kuznetsov, A. P. Istomina, O. I. Bogdanova, A. Y. Vdovichenko, D. R. Streltsov, S. N. Malakhov, R. A. Kamyshinsky, S. N. Chvalun, “Low-filled suspensions of α-chitin nanorods for electrorheological applications”, Carbohydrate Polymers, 277, 118792, 2022.
  • D. J. Yoon, Y. D. Kim, “Synthesis and electrorheological behavior of sterically stabilized polypyrrole–silica–methylcellulose nanocomposite suspension”, Journal of Colloid and Interface Science, 303(2), 573-578, 2006.
  • X. Huang, W. Wen, S. Yang, P. Sheng, “Mechanisms of the giant electrorheological effect”, Solid State Communications, 139(11), 581-588, 2006.
  • C. Zheng, Q. Lei, J. Zhao, X. Zhao, J. Yin, “The effect of dielectric polarization rate difference of filler and matrix on the electrorheological responses of poly(ionic liquid)/polyaniline composite particles”, Polymers, 12(3), 703, 2020.
  • R. K. Pujala, H. B. Bohidar, “Slow dynamics and equilibrium gelation in fractionated montmorillonite nanoplatelet dispersions”, Colloid and Polymer Science, 297(7), 1053-1065, 2019.
  • N. M. Kuznetsov, S. I. Belousov, A. V. Bakirov, S. N. Chvalun, R. A. Kamyshinsky, A. A. Mikhutkin, A. L. Vasiliev, P. M. Tolstoy, A. S. Mazur, E. D. Eidelman, E. B. Yudina, A. Y. Vul, “Unique rheological behavior of detonation nanodiamond hydrosols: The nature of sol-gel transition”, Carbon, 161, 486-494, 2020.
  • Y. D. Liu, X. Quan, B. Hwang, Y. K. Kwon, H. J. Choi, “Core–shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response”, Langmuir, 30(7), 1729-1734, 2014.
Year 2024, Volume: 19 Issue: 2, 127 - 143, 25.11.2024
https://doi.org/10.29233/sdufeffd.1451712

Abstract

References

  • F. P. La Mantia, M. Morreale, “Green composites: A brief review”, Composites Part A: Applied Science and Manufacturing, 42(6), 579-588, 2011.
  • N. M. Kuznetsov, V. V. Kovaleva, S. I. Belousov, S. N. Chvalun, “Electrorheological fluids: From historical retrospective to recent trends”, Materials Today Chemistry, 26,101066, 2022.
  • K. Zhang, H. J. Choi, “Smart polymer/carbon nanotube nanocomposites and their electrorheological response”, Materials, 7(5), 3399-3414, 2014.
  • V. I. Kordonsky, E. V. Korobko, T. G. Lazareva, “Electrorheological polymer‐based suspensions”, Journal of Rheology, 35(7), 1427-1439, 1991.
  • Y. G. Ko, S. S. Shin, U. S. Choi, Y. S. Park, J. W. Woo, “Gelation of chitin and chitosan dispersed suspensions under electric field: Effect of degree of deacetylation”, ACS Applied Materials & Interfaces, 3(4), 1289-1298, 2011.
  • Y. G. Ko, H. J. Lee, S. S. Shin, U. S. Choi, “Dipolar-molecule complexed chitosan carboxylate, phosphate, and sulphate dispersed electrorheological suspensions”, Soft Matter, 8(23), 6273-6279, 2012.
  • N. M. Kuznetsov, Y. D. Zagoskin, A. Y. Vdovichenko, A. V. Bakirov, R. A. Kamyshinsky, A. P. Istomina, T. E. Grigoriev, S. N. Chvalun, “Enhanced electrorheological activity of porous chitosan particles”, Carbohydrate Polymers, 256, 117530, 2021.
  • K. Negita, H. Itou, T. Yakou, “Electrorheological effect in suspension composed of starch powder and silicone oil”, Journal of Colloid and Interface Science, 209(1), 251-254, 1999.
  • J. H. Sung, D. P. Park, B. J. Park, H. J. Choi, M. S. Jhon, “Phosphorylation of potato starch and its electrorheological suspension”, Biomacromolecules, 6(4), 2182-2188, 2005.
  • M. Yavuz, T. Tilki, C. Karabacak, O. Erol, H. I. Unal, M. Uluturk, M. Cabuk, “Electrorheological behavior of biodegradable modified corn starch/corn oil suspensions”, Carbohydrate Polymers, 79(2), 318-324, 2010.
  • Y. G. Ko, H. J. Lee, Y. J. Chun, U. S. Choi, K. P. Yoo, “Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field”, ACS Applied Materials & Interfaces, 5(3), 1122-1130, 2013.
  • B. Sim, D. H. Bae, H. J. Choi, K. Choi, M. S. Islam, N. Kao, “Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields”, Cellulose, 23(1), 185-197, 2016.
  • D. H. Bae, H. J. Choi, K. Choi, J. D. Nam, M. S. Islam, N. Kao, “Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response”, Carbohydrate Polymers, 165, 247-254, 2017.
  • S. H. Kwon, I. H. Park, C. M. Vu, H. J. Choi, “Fabrication and electro-responsive electrorheological characteristics of rice husk-based nanosilica suspension”, Journal of the Taiwan Institute of Chemical Engineers, 95, 432-437, 2019.
  • Y. Chun, Y. G. Ko, T. Do, Y. Jung, S. W. Kim, U. Su Choi, “Spent coffee grounds: Massively supplied carbohydrate polymer applicable to electrorheology”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 392-401, 2019.
  • P. Otero, P. Garcia-Oliveira, M. Carpena, M. Barral-Martinez, F. Chamorro, J. Echave, P. Garcia-Perez, H. Cao, J. Xiao, J. Simal-Gandara, M. A. Prieto, “Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies”, Trends in Food Science & Technology, 116, 1084-1104, 2021.
  • G. Espadas-Aldana, P. Guaygua-Amaguaña, C. Vialle, J.-P. Belaud, P. Evon, C. Sablayrolles, “Life cycle assessment of olive pomace as a reinforcement in polypropylene and polyethylene biocomposite materials: A new perspective for the valorization of this agricultural by-product”, Coatings, 11(5), 525, 2021.
  • M. Volpe, D. Wüst, F. Merzari, M. Lucian, G. Andreottola, A. Kruse, L. Fiori, “One stage olive mill waste streams valorisation via hydrothermal carbonisation”, Waste Management, 80, 224-234, 2018.
  • S. Sismanoglu, U. Tayfun, C.-M. Popescu, Y. Kanbur, “Effective use of olive pulp as biomass additive for eco-grade TPU-based composites using functional surface modifiers”, Biomass Conversion and Biorefinery, 13, 12303-12318, 2023.
  • M. J. Pancholi, A. Khristi, K. M Athira, D. Bagchi, “Comparative analysis of lignocellulose agricultural waste and pre-treatment conditions with FTIR and machine learning modeling”, BioEnergy Research, 16(1), 123-137, 2023.
  • H. M. Boundzanga, B. Cagnon, M. Roulet, S. de Persis, C. Vautrin-Ul, S. Bonnamy, “Contributions of hemicellulose, cellulose, and lignin to the mass and the porous characteristics of activated carbons produced from biomass residues by phosphoric acid activation”, Biomass Conversion and Biorefinery, 12(8), 3081-3096, 2022.
  • A. I. Martı́n Garcı́a, A. Moumen, D. R. Yáñez Ruiz, E. Molina Alcaide, “Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves”, Animal Feed Science and Technology, 107(1), 61-74, 2003.
  • V. Benavente, A. Fullana, “Torrefaction of olive mill waste”, Biomass and Bioenergy, 73, 186-194, 2015.
  • S. Lammi, A. Barakat, C. Mayer-Laigle, D. Djenane, N. Gontard, H. Angellier-Coussy, “Dry fractionation of olive pomace as a sustainable process to produce fillers for biocomposites”, Powder Technology, 326, 44-53, 2018.
  • R. Font, M. D. Rey, “Kinetics of olive oil pyrolysis”, Journal of Analytical and Applied Pyrolysis, 103, 181-188, 2013.
  • M. Wzorek, R. Junga, E. Yilmaz, B. Bozhenko, “Thermal decomposition of olive-mill byproducts: A tg-ftir approach”, Energies, 14(14), 4123, 2021.
  • T. Akar, I. Tosun, Z. Kaynak, E. Ozkara, O. Yeni, E. N. Sahin, S. T. Akar, “An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace”, Journal of Hazardous Materials, 166(2), 1217-1225, 2009.
  • Y. Z. Dong, H. M. Kim, H. J. Choi, “Conducting polymer-based electro-responsive smart suspensions”, Chemical Papers, 75(10), 5009-5034, 2021.
  • J. K. Jung, Y. I. Moon, G. H. Kim, N. H. Tak, “Characterization of dielectric relaxation process by impedance spectroscopy for polymers: Nitrile butadiene rubber and ethylene propylene diene monomer”, Journal of Spectroscopy, 2020, 8815492, 2020.
  • S. Havriliak, S. Negami, “A complex plane analysis of α-dispersions in some polymer systems”, Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117, 1966.
  • N. M. Kuznetsov, V. V. Kovaleva, A. Y. Vdovichenko, S. N. Chvalun, “Natural electrorheological fluids based on cellulose particles in olive oil: The filler size effect”, Colloid Journal, 85(3), 408-417, 2023.
  • M. Hasanin, A. M. Labeeb, “Dielectric properties of nicotinic acid/methyl cellulose composite via “green” method for anti-static charge applications”, Materials Science and Engineering: B, 263,114797, 2021.
  • O. Erol, H. I. Unal, “Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: The effect of anisotropy”, RSC Advances, 5(125), 103159-103171, 2015.
  • G. T. Ngatu, N. M. Wereley, J. O. Karli, R. C. Bell, “Dimorphic magnetorheological fluids: Exploiting partial substitution of microspheres by nanowires”, Smart Materials and Structures, 17(4), 045022, 2008.
  • E. C. Bingham, Fluidity and Plasticity, New York, McGraw-Hill Book Company, Inc., 440 pages, 1922.
  • D. D. Ké, G. Turcotte, “Viscosity of biomaterials”, Chemical Engineering Communications, 6(4-5), 273-282, 1980.
  • W. H. Herschel, R. Bulkley, “Konsistenzmessungen von gummi-benzollösungen”, Kolloid-Zeitschrift, 39(4), 291-300, 1926.
  • M. S. Cho, H. J. Choi, M. S. Jhon, “Shear stress analysis of a semiconducting polymer based electrorheological fluid system”, Polymer, 46(25), 11484-11488, 2005.
  • Y. P. Seo, Y. Seo, “Modeling and analysis of electrorheological suspensions in shear flow”, Langmuir, 28(6), 3077-3084, 2012.
  • L. I. Linzhi, G. A. O. Shujuan, “Polyaniline (PANI) and BaTiO3 composite nanotube with high suspension performance in electrorheological fluid”, Materials Today Communications, 24, 100993, 2020.
  • J.-Y. Hong, M. Choi, C. Kim, J. Jang, “Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials”, Journal of Colloid and Interface Science, 347(2), 177-182, 2010.
  • N. M. Kuznetsov, Y. D. Zagoskin, A. V. Bakirov, A. Y. Vdovichenko, S. N. Malakhov, A. P. Istomina, S. N. Chvalun, “Is chitosan the promising candidate for filler in nature-friendly electrorheological fluids?”, ACS Sustainable Chemistry & Engineering, 9(10), 3802-3810, 2021.
  • S. Y. Oh, T. J. Kang, “Electrorheological response of inorganic-coated multi-wall carbon nanotubes with core–shell nanostructure”, Soft Matter, 10(21), 3726-3737, 2014.
  • M. A. Delgado-Canto, S. D. Fernández-Silva, C. Roman, M. García-Morales, “On the electro-active control of nanocellulose-based functional biolubricants”, ACS Applied Materials & Interfaces, 12(41), 46490-46500, 2020.
  • B. Zhang, Y. Chen, H. Zheng, C. Li, L. Ma, H. Zhang, B. Wang, C. Hao, “Composites of co-doped graphitic C3N4 nanosheets and TiO2 nanoparticles for electrorheological fluid applications”, ACS Applied Nano Materials, 5(1), 1003-1015, 2022.
  • J. Liu, X. Wen, Z. Liu, Y. Tan, S. Yang, P. Zhang, “Electrorheological performances of poly(o-toluidine) and p-toluenesulfonic acid doped poly(o-toluidine) suspensions”, Colloid and Polymer Science, 293(5), 1391-1400, 2015.
  • V. V. Kovaleva, N. M. Kuznetsov, A. P. Istomina, O. I. Bogdanova, A. Y. Vdovichenko, D. R. Streltsov, S. N. Malakhov, R. A. Kamyshinsky, S. N. Chvalun, “Low-filled suspensions of α-chitin nanorods for electrorheological applications”, Carbohydrate Polymers, 277, 118792, 2022.
  • D. J. Yoon, Y. D. Kim, “Synthesis and electrorheological behavior of sterically stabilized polypyrrole–silica–methylcellulose nanocomposite suspension”, Journal of Colloid and Interface Science, 303(2), 573-578, 2006.
  • X. Huang, W. Wen, S. Yang, P. Sheng, “Mechanisms of the giant electrorheological effect”, Solid State Communications, 139(11), 581-588, 2006.
  • C. Zheng, Q. Lei, J. Zhao, X. Zhao, J. Yin, “The effect of dielectric polarization rate difference of filler and matrix on the electrorheological responses of poly(ionic liquid)/polyaniline composite particles”, Polymers, 12(3), 703, 2020.
  • R. K. Pujala, H. B. Bohidar, “Slow dynamics and equilibrium gelation in fractionated montmorillonite nanoplatelet dispersions”, Colloid and Polymer Science, 297(7), 1053-1065, 2019.
  • N. M. Kuznetsov, S. I. Belousov, A. V. Bakirov, S. N. Chvalun, R. A. Kamyshinsky, A. A. Mikhutkin, A. L. Vasiliev, P. M. Tolstoy, A. S. Mazur, E. D. Eidelman, E. B. Yudina, A. Y. Vul, “Unique rheological behavior of detonation nanodiamond hydrosols: The nature of sol-gel transition”, Carbon, 161, 486-494, 2020.
  • Y. D. Liu, X. Quan, B. Hwang, Y. K. Kwon, H. J. Choi, “Core–shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response”, Langmuir, 30(7), 1729-1734, 2014.
There are 53 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Özlem Erol 0000-0003-2156-537X

Publication Date November 25, 2024
Submission Date March 12, 2024
Acceptance Date August 12, 2024
Published in Issue Year 2024 Volume: 19 Issue: 2

Cite

IEEE Ö. Erol, “Electric Field Responsive Smart Fluids from Olive Pulp Powder”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 19, no. 2, pp. 127–143, 2024, doi: 10.29233/sdufeffd.1451712.