Research Article
BibTex RIS Cite

Hybrid Deep Learning and Reinforcement Learning Approach for Brain Tumor Classification from MRI Images

Year 2025, Volume: 20 Issue: 2, 206 - 221, 26.11.2025

Abstract

Brain cancer, resulting from abnormal tumor growth in brain tissue, requires accurate and timely diagnosis. Although MRI plays a crucial role, manual interpretation is prone to errors and delays. To address this, we propose a hybrid system combining deep learning (VGG16, ResNet50, DenseNet201) with reinforcement learning (Q-learning) for brain tumor classification. Using three distinct MRI datasets within MATLAB, the models achieved high classification accuracies: 97.45% (VGG16), 96.06% (ResNet50), and 96.93% (DenseNet201). The integration of reinforcement learning improved decision-making and interpretability. Additionally, a user-friendly interface was developed to support clinical decision-making. This study demonstrates that combining deep learning with reinforcement learning enhances model adaptability, offering a more reliable and effective diagnostic approach.

References

  • S. Rasheed, K. Rehman and M. S. H. Akash, "An insight into the risk factors of brain tumors and their therapeutic interventions", Biomedicine & Pharmacotherapy, 143, 112119, 2021.
  • Q. T. Ostrom, M. Price, C. Neff, G. Cioffi, K. A. Waite, C. Kruchko and J. S. Barnholtz-Sloan, "CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019", Neuro-Oncology, 24(Suppl 5), v1-v95, 2022.
  • A. M. Molinaro, J. W. Taylor, J. K. Wiencke and M. R. Wrensch, "Genetic and molecular epidemiology of adult diffuse glioma", Nature Reviews Neurology, 15(7), 405-417, 2019.
  • A. Thakur, C. Faujdar, R. Sharma, S. Sharma, B. Malik, K. Nepali and J. P. Liou, "Glioblastoma: Current status, emerging targets, and recent advances", Journal of Medicinal Chemistry, 65(13), 8596-8685, 2022.
  • T. Wang, Y. Ni and L. Liu, "Innovative imaging techniques for advancing cancer diagnosis and treatment", Cancers, 16(14), 2607, 2024.
  • T. Yousaf, G. Dervenoulas and M. Politis, "Advances in MRI methodology", International Review of Neurobiology, 141, 31-76, 2018.
  • Z. Zhou and Z. R. Lu, "Gadolinium-based contrast agents for magnetic resonance cancer imaging", Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5(1), 1-18, 2013.
  • Y. Yu, D. H. Lee, S. L. Peng, K. Zhang, Y. Zhang, S. Jiang, et al., "Assessment of glioma response to radiotherapy using multiple MRI biomarkers with manual and semiautomated segmentation algorithms", Journal of Neuroimaging, 26(6), 626-634, 2016.
  • D. Gala, H. Behl, M. Shah and A. N. Makaryus, "The role of artificial intelligence in improving patient outcomes and future of healthcare delivery in cardiology: A narrative review of the literature", Healthcare (Basel), 12(4), 481, 2024.
  • S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th ed., Pearson, 2021.
  • G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken and C. I. Sánchez, "A survey on deep learning in medical image analysis", Medical Image Analysis, 42, 60-88, 2017.
  • I. Hammad and K. El-Sankary, "Impact of approximate multipliers on VGG deep learning network", IEEE Access, 6, 60438-60444, 2018.
  • S. H. Wang and Y. D. Zhang, "DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification", ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(2s), 1-19, 2020.
  • R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., MIT Press, 2018.
  • L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie and L. Farhan, “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions”, Journal of Big Data, 8(1), 53, 2021.
  • Y. N. Kuan, K. M. Goh and L. L. Lim, "Systematic review on machine learning and computer vision in precision agriculture: Applications, trends, and emerging techniques", Engineering Applications of Artificial Intelligence, 148, 110401, 2025.
  • D. Dablain, K. N. Jacobson, C. Bellinger, M. Roberts and N. M. Chawla, "Understanding CNN fragility when learning with imbalanced data", Machine Learning, 113, 4785-4810, 2024.
  • S. M. Polisetty, "AI-driven diagnosis and treatment recommendation in healthcare: A hybrid deep learning framework", International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2025.
  • A. B. Sicilia, X. Zhao, A. Sosnovskikh and S. J. Hwang, "PAC Bayesian performance guarantees for deep (stochastic) networks in medical imaging", Medical Image Computing and Computer-Assisted Intervention – MICCAI 2021, 12903, 560-570, 2021.
  • X. Jiang, Z. Hu, S. Wang and Y. Zhang, "Deep learning for medical image-based cancer diagnosis", Cancers, 15(14), 3608, 2023.
  • A. K. Mandle, S. Sahu and G. P. Gupta, "CNN-based deep learning technique for the brain tumor identification and classification in MRI images", International Journal of Software Science and Computational Intelligence, 14(1), 1-16, 2022.
  • S. S. A. Khan, A. Prova and U. Acharjee, "MRI-based brain tumor image classification using CNN", Asian Journal of Research in Computer Science, 15(13), 1-10, 2023
  • M. A. Amou, K. Xia, S. Kamhi, and M. Mouhafid, "A Novel MRI Diagnosis Method for Brain Tumor Classification Based on CNN and Bayesian Optimization," Healthcare, 10 (3), 494, 2022.
  • J. Cheng, W. Yang, M. Huang, W. Huang, J. Jiang, Y. Zhou, R. Yang, J. Zhao, Y. Feng, Q. Feng and W. Chen, “Retrieval of brain tumors by adaptive spatial pooling and Fisher vector representation”, PloS One, 11(6), e0157112, 2016.
  • M. I. Sharif, J. P. Li, M. A. Khan and M. A. Saleem, "Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images", Pattern Recognition Letters, 129, 181-189, 2020.
  • R. A. Zeineldin, M. E. Karar, O. Burgert and F. Mathis-Ullrich, "Multimodal CNN networks for brain tumor segmentation in MRI: A BraTS 2022 challenge solution", International MICCAI Brainlesion Workshop, 13409, 127-137, 2022.
  • M. Attique, G. Gilanie, M. S. Mehmood, M. S. Naweed, M. Ikram, J. A. Kamran and A. Vitkin, “Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues”, PloS One, 7(3), e33616, 2012.
  • A. Biswas, S. Abedin, and M. A. Kabir, "Moving Object Detection Using Ultrasonic Radar with Proper Distance, Direction, and Object Shape Analysis," Journal of Information Systems Engineering and Business Intelligence, 6, 2, 2020.
  • K. Neamah, F. Mohamed, S. R. Waheed, W. H. M. Kurdi, A. Y. Taha and K. A. Kadhim, "Utilizing deep improved ResNet50 for brain tumor classification based MRI", IEEE Open Journal of the Computer Society, 5, 446-456, 2024.
  • H. A. Munira and M. S. Islam, "Hybrid deep learning models for multi-classification of tumour from brain MRI", Journal of Information Systems Engineering and Business Intelligence, 8(2), 162-174, 2022.
  • P. Pilaoon, A. Narkthewan, N. Wadlom, R. Varakulsiripunth, K. Hamamoto and N. Maneerat, "Glioma brain tumor classification using transfer learning", Proceedings of the 2024 10th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), 17-22, 2024.
  • P. Pilaoon, A. Narkthewan, N. Wadlom, R. Varakulsiripunth, K. Hamamoto and N. Maneerat, "Glioma brain tumor classification using transfer learning", Proceedings of the 10th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 17–22, 2024.
  • M. A. Khan, M. Z. Hussain, S. Mehmood, M. F. Khan, M. Ahmad, T. Mazhar, T. Shahzad, and M. M. Saeed, “Transfer learning for accurate brain tumor classification in MRI: A step forward in medical diagnostics,” Discover Oncology, vol. 16, no. 1040, 2025.
  • A. Sevinc, M. Uçan and B. Kaya, "A distillation approach to transformer-based medical image classification with limited data", Diagnostics, 15(7), 929, 2025.
There are 34 citations in total.

Details

Primary Language English
Subjects Bioinformatics and Computational Biology (Other)
Journal Section Research Article
Authors

Çiğdem Saraç 0000-0002-3538-6551

Seda Arıkan Arıbal 0009-0009-9067-0502

Yiğit Ali Üncü 0000-0001-7398-9540

Publication Date November 26, 2025
Submission Date May 7, 2025
Acceptance Date November 14, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

IEEE Ç. Saraç, S. Arıkan Arıbal, and Y. A. Üncü, “Hybrid Deep Learning and Reinforcement Learning Approach for Brain Tumor Classification from MRI Images”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 20, no. 2, pp. 206–221, 2025, doi: 10.29233/sdufeffd.1694369.