Research Article
BibTex RIS Cite

Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.)

Year 2022, , 275 - 284, 20.08.2022
https://doi.org/10.19113/sdufenbed.1056646

Abstract

Nanoparticles with unique physiochemical properties can be produced using non-toxic precursors with phyto-nano synthesis. In this study, Nanowire (AgNW) was produced from silver nanoparticles (AgNP) reduced with Lavandula officinalis L. flower extract using the phyto-nano synthesis method. The length of the produced AgNW is 1-20 µm and its diameter is approximately 40-100 nm. Although the reduction of silver was quite fast in the light environment, it was found to be slow in the dark environment. However, the effect of darkness on AgNP stabilization and AgNW formation was quite important. In addition, it was revealed that the main physical factor that enables AgNW to elongate is the mechanics of the environment provided by the centrifuge. Optical and morphological characterization of nanoparticles was done with UV-visible spectrometry and SEM. The crystal structure of the particles was determined by XRD. Energy dispersion spectrums of nanoparticles were determined by EDS. Character and size analysis was performed by TEM. FTIR determination was performed on the extracts to guide the determination of the reduction factors in light and dark. The extracts were also determined by HPLC to give an idea about the role of flavonoid content in the Ag reduction due to light. Accordingly, it was found that aromatic ring compounds with alcoholic groups effectively reduce silver in the dark and promote AgNW formation.

References

  • [1] Chandra, H., Kumari, P., Bontempi, E., Yadav, S. 2020. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518.
  • [2] Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. 2020. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566.
  • [3] Jiang, H., Yan, X., Miao, J., You, M., Zhu, Y., Pan, J., Wang, L., Cheng, X. 2021. Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors. Journal of Materiomics, 7(1), 156-165.
  • [4] Kwon, J., Suh, Y. D., Lee, J., Lee, P., Han, S., Hong, S., Yeo, J., Lee. H., Ko, S. H. 2018. Recent progress in silver nanowire based flexible/wearable optoelectronics. Journal of Materials Chemistry C, 6 (28), 7445-7461.
  • [5] Liu, W. J., Liu, M. L., Lin, S., Liu, J. C., Lei, M., Wu, H., Dai, C. Q., Wei, Z. Y. 2019.Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Optics Express, 27(12), 16440-16448
  • [6] Williams, N. X., Noyce, S., Cardenas, J. A., Catenacci, M., Wiley, B. J., Franklin, A. D. 2019. Silver nanowire inks for direct-write electronic tattoo applications. Nanoscale, 11(30), 14294-14302.
  • [7] Yu, Z., Li, L., Zhang, Q., Hu, W., Pei, Q. 2011. Silver nanowire‐polymer composite electrodes for efficient polymer solar cells. Advanced Materials, 23(38), 4453-4457.
  • [8] Lah, N. A. C., Trigueros, S. 2019. Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires. Science and Technology of Advanced Materials, 20(1), 225-261.
  • [9] Zhang, P., Wyman, I., Hu, J., Lin, S., Zhong, Z., Tu, Y., Huang, Z., Wei, Y. 2017. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Materials Science and Engineering: B, 223, 1-23.
  • [10] Chen, L., Huo, Y., Han, Y. X., Li, J. F., Ali, H., Batjikh, I., Hurh, J., Pu, Y.J., Yang, D. C. 2020. Biosynthesis of gold and silver nanoparticles from Scutellaria baicalensis roots and in vitro applications. Applied Physics A, 126, 1-12.
  • [11] Radulescu, C., Stihi, C., Ilie, M., Lazurcă, D., Gruia, R., Olaru, O. T., Bute, O., C., Dulama, I., D., Stirbescu R. M., Teodorescu, S., Florescu, M. 2017. Characterization of Phenolics in Lavandula angustifolia. Analytical Letters, 50(17), 2839-2850.
  • [12] Horta-Piñeres, S., Hurtado, R. B., Avila-Padilla, D., Cortez-Valadez, M., Flores-López, N. S., Flores-Acosta, M. 2020. Silver nanoparticle-decorated silver nanowires: a nanocomposite via green synthesis. Applied Physics A, 126(1), 15.
  • [13] Borase, H.P., Salunke, B.K., Salunkhe, R.B., Pati, C.D., Hallsworth, J.E., Kim, B.S., Patil, S.V. 2014. Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173(1), 1-29.
  • [14] Wang, Y., O'Connor, D., Shen, Z., Lo, I.M, Tsang, D.C., Pehkonene, S., Pu, S., Hou, D. 2019. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 226, 540-549.
  • [15] Rana, A., Yadav, K., Jagadevan, S.A., 2020. comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 272, 122880.
  • [16] Wang, J., Zhang, S., Shi, Z., Jiu, J., Wu, C., Sugahara, T., Nagao, S., Suganuma, K., He, P. 2018.Nanoridge patterns on polymeric film by a photodegradation copying method for metallic nanowire networks. Royal Society of Chemistry Advances, 8(71), 40740-40747.
  • [17] Begum, R., Farooqi, Z. H., Naseem, K., Ali, F., Batool, M., Xiao, J., Irfan, A. 2018. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: a review. Critical Reviews in Analytical Chemistry, 48(6), 503-516.
  • [18] Yousaf, H., Mehmood, A., Ahmad, K. S., Raffi, M. 2020. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.
  • [19] Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Gurunathan, S. 2010. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids and surfaces B: Biointerfaces, 75(1), 335-341.
  • [20] Fatima, R., Priya, M., Indurthi, L., Radhakrishnan, V., Sudhakaran, R. 2020. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microbial Pathogenesis, 138, 103780.
  • [21] Cao, K., Yang, H., Gao, L., Han, Y., Feng, J., Yang, H., Zhang, H., Wang, W., Lu, Y. 2020 .In situ mechanical characterization of silver nanowire/graphene hybrids films for flexible electronics. International Journal of Smart and Nano Materials, 11(3), 265-276.
  • [22] Ezra, L., O'Dell, Z.J., Hui, J., Riley, K.R. 2020. Emerging investigator series: quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy. Environmental Science: Nano, 7(9), 2509-2521.
  • [23] Parente, M., Van Helvert, M., Hamans, R.F., Verbroekken, R., Sinha, R., Bieberle-Hütter, A., Baldi, A. 2020. Simple and Fast High-Yield Synthesis of Silver Nanowires. Nano Letters, 20(8), 5759-5764.
  • [24] Liu, L., He, C., Li, J., Guo, J., Yang, D., & Wei, J. 2013. Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New Journal of Chemistry, 37(7), 2179-2185. [25] Kim, T. Y., Kim, W. J., Hong, S. H., Kim, J. E., Suh, K. S. 2009. Ionic‐Liquid‐Assisted Formation of Silver Nanowires. Angewandte Chemie International Edition, 48(21), 3806-3809.
  • [26] Lu, Z., Meng, M., Jiang, Y., Xie, J. 2014. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 447, 1-7.
  • [27] Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., Upadhyay, S. N. 2016.Light induced green synthesis of silver nanoparticles using aqueous extract of Prunus amygdalus. Green and Sustainable Chemistry, 6(1), 26-33.
  • [28] Vlnieska, V., Zakharova, M., Börner, M., Bade, K., Mohr, J., Kunka, D. 2018. Chemical and Molecular Variations in Commercial Epoxide Photoresists for X-ray Lithography. Applied Sciences, 8(4), 528.
  • [29] Badri, K.B.H., Sien, W.C., Shahrom, M.S.B.R., Hao, L.C., Baderuliksan, N.Y., Rabbi’atul, N., Norzali, A. 2010. FTIR spectroscopy analysis of the prepolymerization of palm-based polyurethane. Journal of Solid State Science and Technology, 18 (2), 1-8. [30] Javaherian, M., Kazemi, F., Ayati, S.E., Davarpanah, J., Ramdar, M. 2017. A tandem scalable microwave-assisted Williamson alkyl aryl ether synthesis under mild conditions. Organic Chemistry Research, 3(1), 73-85.
  • [31] Clavé, G., Garel, C., Poullain, C., Renard, B.L, Olszewski, T.K., Lange, B., Shutcha, M., Faucon, M.P., Grison, C. 2016. Ullmann reaction through ecocatalysis: insights from bioresource and synthetic potential. Royal Society of Chemistry Advances, 6(64), 59550-59564.
  • [32] Gutzler, R., Cardenas, L., Lipton-Duffin, J., El Garah, M., Dinca, L. E., Szakacs, C. E., ... & Rosei, F., Fu, C., Gallagher, M., Vondráček, M., Rybachuk, M., Perepichka, D.F. 2014. Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver. Nanoscale, 6(5), 2660-2668.
  • [33] El-Kabbany, E., Badr, Y., Tosson, M., Taha, S., Mahrous., S. A. 1986. Detailed IR Study of the Order-Disorder Phase Transition of AgNO3. Physica Status Solidi (a), 94(1), 35-43.
  • [34] Chen, X., Zhang, L., Qian, C., Du, Z., Xu, P., Xiang, Z. 2020. Chemical compositions of essential oil extracted from Lavandula angustifolia and its prevention of TPA-induced inflammation, Microchemical Journal. 153, 104458.
  • [35] Lu, Z., Liu, Y., Zhao, L., Jiang, X., Li, M., Wang, Y., Xu, Y., Gao, L., Xia, T. 2014. Effect of low-intensity white light mediated de-etiolation on the biosynthesis of polyphenols in tea seedlings. Plant Physiology and Biochemistry, 80, 328-336.
  • [36] Stadlbauer, S., Ohmori, K., Hattori, F., Suzuki, K. 2012. A new synthetic strategy for catechin-class polyphenols: concise synthesis of (−)-epicatechin and its 3-O-gallate. Chemical Communications, 48(67), 8425-8427.
  • [37] Bhaduri, G.A., Little, R., Khomane, R.B., Lokhande, S.U., Kulkarni., B.D., Mendis, B. G., Šiller, L 2013. Green synthesis of silver nanoparticles using sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 258, 1-9.

Bitki ekstraktı (Lavandula officinalis L.) ile gümüş nanotel sentezinde fotokatalizin flavonoidler ile ilişkisi

Year 2022, , 275 - 284, 20.08.2022
https://doi.org/10.19113/sdufenbed.1056646

Abstract

Benzersiz fizikokimyasal özelliklere sahip nanopartiküller, toksik olmayan öncüler kullanılarak fito nano sentez ile üretilebilir. Bu çalışmada, Lavandula officinalis L. çiçek özütü ile indirgenmiş gümüş nanoparçacıklardan (AgNP) fito-nano sentez yöntemi kullanılarak Nanotel (AgNW) üretilmiştir. Üretilen AgNW'nin uzunluğu 1-20 µm ve çapı yaklaşık 40-100 nm olarak tesbit edilmiştir. Gümüşün indirgenmesi aydınlık ortamda oldukça hızlı olmasına rağmen karanlık ortamda yavaş olduğu görülmüştür. Bununla beraber karanlığın AgNP stabilizasyonu ve AgNW oluşumu üzerinde kayda değer etkisi olmuştur. Ayrıca AgNW'nin uzamasını sağlayan ana fiziksel faktörün santrifüjün sağladığı ortamın mekaniği olduğu bulunmuştur. Nanopartiküllerin optik ve morfolojik karakterizasyonu UV-Vis spektrometri ve SEM ile yapıldı. Partiküllerin kristal yapısı XRD ile belirlendi. Nanopartiküllerin enerji dağılım spektrumları EDS ile belirlendi. Karakter ve boyut analizi TEM ile yapıldı. Aydınlık ve karanlıktaki indirgeme faktörlerinin belirlenmesine rehberlik etmek için ekstraktlar üzerinde FTIR yapıldı. Ayrıca, ışık ile Ag indirgenmesindeki flavonoid içeriğinin rolü hakkında bir fikir vermesi için numunlere HPLC yapıldı. Buna göre, alkollü gruplara sahip aromatik halkalı bileşiklerinin karanlıkta gümüşü etkili bir şekilde indirgediği ve AgNW oluşumunu teşvik ettiği sonucuna varıldı.

References

  • [1] Chandra, H., Kumari, P., Bontempi, E., Yadav, S. 2020. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 24, 101518.
  • [2] Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. 2020. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566.
  • [3] Jiang, H., Yan, X., Miao, J., You, M., Zhu, Y., Pan, J., Wang, L., Cheng, X. 2021. Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors. Journal of Materiomics, 7(1), 156-165.
  • [4] Kwon, J., Suh, Y. D., Lee, J., Lee, P., Han, S., Hong, S., Yeo, J., Lee. H., Ko, S. H. 2018. Recent progress in silver nanowire based flexible/wearable optoelectronics. Journal of Materials Chemistry C, 6 (28), 7445-7461.
  • [5] Liu, W. J., Liu, M. L., Lin, S., Liu, J. C., Lei, M., Wu, H., Dai, C. Q., Wei, Z. Y. 2019.Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Optics Express, 27(12), 16440-16448
  • [6] Williams, N. X., Noyce, S., Cardenas, J. A., Catenacci, M., Wiley, B. J., Franklin, A. D. 2019. Silver nanowire inks for direct-write electronic tattoo applications. Nanoscale, 11(30), 14294-14302.
  • [7] Yu, Z., Li, L., Zhang, Q., Hu, W., Pei, Q. 2011. Silver nanowire‐polymer composite electrodes for efficient polymer solar cells. Advanced Materials, 23(38), 4453-4457.
  • [8] Lah, N. A. C., Trigueros, S. 2019. Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires. Science and Technology of Advanced Materials, 20(1), 225-261.
  • [9] Zhang, P., Wyman, I., Hu, J., Lin, S., Zhong, Z., Tu, Y., Huang, Z., Wei, Y. 2017. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Materials Science and Engineering: B, 223, 1-23.
  • [10] Chen, L., Huo, Y., Han, Y. X., Li, J. F., Ali, H., Batjikh, I., Hurh, J., Pu, Y.J., Yang, D. C. 2020. Biosynthesis of gold and silver nanoparticles from Scutellaria baicalensis roots and in vitro applications. Applied Physics A, 126, 1-12.
  • [11] Radulescu, C., Stihi, C., Ilie, M., Lazurcă, D., Gruia, R., Olaru, O. T., Bute, O., C., Dulama, I., D., Stirbescu R. M., Teodorescu, S., Florescu, M. 2017. Characterization of Phenolics in Lavandula angustifolia. Analytical Letters, 50(17), 2839-2850.
  • [12] Horta-Piñeres, S., Hurtado, R. B., Avila-Padilla, D., Cortez-Valadez, M., Flores-López, N. S., Flores-Acosta, M. 2020. Silver nanoparticle-decorated silver nanowires: a nanocomposite via green synthesis. Applied Physics A, 126(1), 15.
  • [13] Borase, H.P., Salunke, B.K., Salunkhe, R.B., Pati, C.D., Hallsworth, J.E., Kim, B.S., Patil, S.V. 2014. Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173(1), 1-29.
  • [14] Wang, Y., O'Connor, D., Shen, Z., Lo, I.M, Tsang, D.C., Pehkonene, S., Pu, S., Hou, D. 2019. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 226, 540-549.
  • [15] Rana, A., Yadav, K., Jagadevan, S.A., 2020. comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 272, 122880.
  • [16] Wang, J., Zhang, S., Shi, Z., Jiu, J., Wu, C., Sugahara, T., Nagao, S., Suganuma, K., He, P. 2018.Nanoridge patterns on polymeric film by a photodegradation copying method for metallic nanowire networks. Royal Society of Chemistry Advances, 8(71), 40740-40747.
  • [17] Begum, R., Farooqi, Z. H., Naseem, K., Ali, F., Batool, M., Xiao, J., Irfan, A. 2018. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: a review. Critical Reviews in Analytical Chemistry, 48(6), 503-516.
  • [18] Yousaf, H., Mehmood, A., Ahmad, K. S., Raffi, M. 2020. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C, 112, 110901.
  • [19] Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Gurunathan, S. 2010. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids and surfaces B: Biointerfaces, 75(1), 335-341.
  • [20] Fatima, R., Priya, M., Indurthi, L., Radhakrishnan, V., Sudhakaran, R. 2020. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microbial Pathogenesis, 138, 103780.
  • [21] Cao, K., Yang, H., Gao, L., Han, Y., Feng, J., Yang, H., Zhang, H., Wang, W., Lu, Y. 2020 .In situ mechanical characterization of silver nanowire/graphene hybrids films for flexible electronics. International Journal of Smart and Nano Materials, 11(3), 265-276.
  • [22] Ezra, L., O'Dell, Z.J., Hui, J., Riley, K.R. 2020. Emerging investigator series: quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy. Environmental Science: Nano, 7(9), 2509-2521.
  • [23] Parente, M., Van Helvert, M., Hamans, R.F., Verbroekken, R., Sinha, R., Bieberle-Hütter, A., Baldi, A. 2020. Simple and Fast High-Yield Synthesis of Silver Nanowires. Nano Letters, 20(8), 5759-5764.
  • [24] Liu, L., He, C., Li, J., Guo, J., Yang, D., & Wei, J. 2013. Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New Journal of Chemistry, 37(7), 2179-2185. [25] Kim, T. Y., Kim, W. J., Hong, S. H., Kim, J. E., Suh, K. S. 2009. Ionic‐Liquid‐Assisted Formation of Silver Nanowires. Angewandte Chemie International Edition, 48(21), 3806-3809.
  • [26] Lu, Z., Meng, M., Jiang, Y., Xie, J. 2014. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspect, 447, 1-7.
  • [27] Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., Upadhyay, S. N. 2016.Light induced green synthesis of silver nanoparticles using aqueous extract of Prunus amygdalus. Green and Sustainable Chemistry, 6(1), 26-33.
  • [28] Vlnieska, V., Zakharova, M., Börner, M., Bade, K., Mohr, J., Kunka, D. 2018. Chemical and Molecular Variations in Commercial Epoxide Photoresists for X-ray Lithography. Applied Sciences, 8(4), 528.
  • [29] Badri, K.B.H., Sien, W.C., Shahrom, M.S.B.R., Hao, L.C., Baderuliksan, N.Y., Rabbi’atul, N., Norzali, A. 2010. FTIR spectroscopy analysis of the prepolymerization of palm-based polyurethane. Journal of Solid State Science and Technology, 18 (2), 1-8. [30] Javaherian, M., Kazemi, F., Ayati, S.E., Davarpanah, J., Ramdar, M. 2017. A tandem scalable microwave-assisted Williamson alkyl aryl ether synthesis under mild conditions. Organic Chemistry Research, 3(1), 73-85.
  • [31] Clavé, G., Garel, C., Poullain, C., Renard, B.L, Olszewski, T.K., Lange, B., Shutcha, M., Faucon, M.P., Grison, C. 2016. Ullmann reaction through ecocatalysis: insights from bioresource and synthetic potential. Royal Society of Chemistry Advances, 6(64), 59550-59564.
  • [32] Gutzler, R., Cardenas, L., Lipton-Duffin, J., El Garah, M., Dinca, L. E., Szakacs, C. E., ... & Rosei, F., Fu, C., Gallagher, M., Vondráček, M., Rybachuk, M., Perepichka, D.F. 2014. Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver. Nanoscale, 6(5), 2660-2668.
  • [33] El-Kabbany, E., Badr, Y., Tosson, M., Taha, S., Mahrous., S. A. 1986. Detailed IR Study of the Order-Disorder Phase Transition of AgNO3. Physica Status Solidi (a), 94(1), 35-43.
  • [34] Chen, X., Zhang, L., Qian, C., Du, Z., Xu, P., Xiang, Z. 2020. Chemical compositions of essential oil extracted from Lavandula angustifolia and its prevention of TPA-induced inflammation, Microchemical Journal. 153, 104458.
  • [35] Lu, Z., Liu, Y., Zhao, L., Jiang, X., Li, M., Wang, Y., Xu, Y., Gao, L., Xia, T. 2014. Effect of low-intensity white light mediated de-etiolation on the biosynthesis of polyphenols in tea seedlings. Plant Physiology and Biochemistry, 80, 328-336.
  • [36] Stadlbauer, S., Ohmori, K., Hattori, F., Suzuki, K. 2012. A new synthetic strategy for catechin-class polyphenols: concise synthesis of (−)-epicatechin and its 3-O-gallate. Chemical Communications, 48(67), 8425-8427.
  • [37] Bhaduri, G.A., Little, R., Khomane, R.B., Lokhande, S.U., Kulkarni., B.D., Mendis, B. G., Šiller, L 2013. Green synthesis of silver nanoparticles using sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 258, 1-9.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Havva Kaya 0000-0001-7083-0542

Semra Kılıç 0000-0001-9494-2952

Publication Date August 20, 2022
Published in Issue Year 2022

Cite

APA Kaya, H., & Kılıç, S. (2022). Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 275-284. https://doi.org/10.19113/sdufenbed.1056646
AMA Kaya H, Kılıç S. Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.). Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2022;26(2):275-284. doi:10.19113/sdufenbed.1056646
Chicago Kaya, Havva, and Semra Kılıç. “Relationship of Photocatalysis With Flavonoids in Silver Nanowire Synthesis With Herbal Extract (Lavandula Officinalis L.)”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 2 (August 2022): 275-84. https://doi.org/10.19113/sdufenbed.1056646.
EndNote Kaya H, Kılıç S (August 1, 2022) Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 275–284.
IEEE H. Kaya and S. Kılıç, “Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.)”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 26, no. 2, pp. 275–284, 2022, doi: 10.19113/sdufenbed.1056646.
ISNAD Kaya, Havva - Kılıç, Semra. “Relationship of Photocatalysis With Flavonoids in Silver Nanowire Synthesis With Herbal Extract (Lavandula Officinalis L.)”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (August 2022), 275-284. https://doi.org/10.19113/sdufenbed.1056646.
JAMA Kaya H, Kılıç S. Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.). Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26:275–284.
MLA Kaya, Havva and Semra Kılıç. “Relationship of Photocatalysis With Flavonoids in Silver Nanowire Synthesis With Herbal Extract (Lavandula Officinalis L.)”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 2, 2022, pp. 275-84, doi:10.19113/sdufenbed.1056646.
Vancouver Kaya H, Kılıç S. Relationship of photocatalysis with flavonoids in silver nanowire synthesis with herbal extract (Lavandula officinalis L.). Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26(2):275-84.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.