Research Article
BibTex RIS Cite

Silver and Zinc Oxide Nano Particle Application to the Cotton Fabric Activated with Corona Plasma

Year 2015, Volume: 19 Issue: 2, 78 - 85, 02.09.2015
https://doi.org/10.19113/sdufbed.97992

Abstract

In this study, durable application of silver nano particles (Ag-NP) and zinc oxide nano particles (ZnO-NP) to the cotton fabric activated by corona plasma was investigated. The aim is to produce antibacterial fabric. In the study, washing durable application of the nano particles to the cotton fabric activated by corona plasma was investigated when a cross-linker did not use. The padding method was used for nano particle application. The presence and durability of the nano particles on the fabric were studied by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) analysis. Antibacterial activity of the fabric was determined by a quantitative test method AATCC Test Method 100. Besides bursting tenacity and air permeability properties of the finished fabrics, whiteness and yellowness index were measured. According to the test and analysis results, washing durable application both of silver and zinc oxide nano particles to the corona plasma pretreated fabrics were carried out. Antibacterial activity of the fabrics against to S.aureus gram positive bacteria was determined

References

  • Simoncic, B., Tomsic, B., 2010. Structures of Novel Antimicrobial Agents For Textiles - A review. Textile Research Journal, 80(16), 1721-1737.
  • Lim, S-H., Hudson, S.M., 2004. Application of a Fiber- Reactive Chitosan Derivative to Cotton Fabric as an Antimicrobial Textile Finish. Carbohydrate Polymers, 56, 227-234.
  • Rajendran, R., Balakumar, C., Mohammed Ahammed, H.A., Jayakumar, S., Vaideki, K., Rajesh, E.M., 2010. Use of Zinc Oxide Nano Particles For Production of Antimicrobial Textiles. International Journal of Engineering Science and Technology, 2(1), 202-208.
  • Selvam, S., Sundrarajan, M., 2012. Functionalization of Cotton Fabric with PVP/ZnO Nanoparticles for Improved Reactive Dyeability and Antibacterial Activity. Carbohydrate Polymers, 87,1419-1424.
  • Lee J., Jeong S., 2005. Bacteriostasis and Skin Innoxiousness of Nanosize Silver Colloids on Textile Fabrics. Textile Research Journal, 75, 551-556.
  • Selvam, S., Rajiv Gandhi, R., Suresh, J., Gowri, S., Ravikumar, S., Sundrarajan, M., 2012. Antibacterial Effect of Novel Synthesized Sulfated β-cyclodextrin Crosslinked Cotton Fabric and its Improved Antibacterial Activities with ZnO, TiO2 and Ag Nanoparticles Coating. International Journal of Pharmaceutics, 434, 366-374.
  • Montazer, M; Pakdel, E, Behzadnia, A., 2011. Novel Feature of Nano-Titanium Dioxide on Textiles:
  • Antifelting and Antibakterial Wool. Journal of Applied Polymer Science, 121(6), 3407-3413.
  • Lee, H.J., Yeo, S.Y., Jeong, S.H., 2003. Antibacterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics. Journal of Materials Science, 38, 2199-2204.
  • Gorensek M., Recelj P., 2007. Nanosilver Funtionalized Cotton Fabric. Textile Research Journal, 77(3), 138-141.
  • Gao Y., Cranston R., 2008. Recent Advances in Antimicrobial Treatments of Textiles. Textile
  • Research Journal, 78, 60-72.
  • Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz- Sigl, E., Hasmann, A., Guebitz, G.M., Gedanken, A., 2009. Antibacterial Properties of an in situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics, Applied Materials & Interfaces, 1(2), 361- 366.
  • Raghupathi, R.K., Koodali, T.R., Manna, C.A., 2011. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir, 14; 27(7), 4020- 4028.
  • Uğur, S.Ş., Sarıışık, M., Aktaş, A.H., 2010. Pamuklu Kumaşlarda Antibakteriyel Amaçlı ZnO Nanopartikül İçeren İnce Filmlerin Oluşturulması. Süleyman
  • Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14(1), 95-103.
  • Kang, J. Y., 2004. Textile Plasma Treatment Review- Natural Polymer-Based Textiles. AATCC Review, 4(10), 28-32.
  • Roth, J.R., 1995.Industrial Plasma Engineering Volume 1: Principles. Institute of Physics Publishing, London, 538.
  • Roth, J.R., 2001. Industrial Plasma Engineering Volume 2: Applications to Nonthermal Plasma Processing, Institute of Physics Publishing, London, 516s.
  • Xu, W., Liu., X., 2003. Surface Modification of Polyester Fabric by Corona Discharge Irradiation. European Polymer Journal, 39, 199–202.
  • Carneiro, N., Souto, A.P., Nogueira, C., Madureira, A., Krebs, C., Cooper, S., 2005. Preparation of Cotton Material Using Corona Discharge. Journal of Natural Fibres, 2(4), 53-65.
  • Kalliohakaa, T., Paasia, J., Lemaire, P., 2005. Forced Corona Method For The Evaluation of Fabrics With Conductive Fibres. Journal of Electrostatics, 63, 583- 588.
  • Alay, S., Göktepe, F., Souto, A.P., Carneiro, N.,
  • Fernandes, F., Dias, P., 2007.Improvement of Durable Properties of Surgical Textiles Using Atmospheric Plasma Treatment. Autex Textile Congress, 26-28 June 2007, Tampere-Finlandiya.
  • Çakar, A., 2015. Antibakteriyel Özellikli Kumaş Üretimi Üzerine Bir Araştırma, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 101s, Isparta.
  • Şahin, H.T., Arslan, M.B., Korkut, S., Şahin,C. 2010. Colour Changes of Heat-Treated Woods of Red-Bud Maple. European Hophornbeam and Oak. Color Research & Application, 462-466.
  • Tutak, M., Bilget, Ö., 2014. Pigment Baskı Patı ile Basılmış Nano Boyutta Gümüş/Çinko Partiküllerin Renk Performansı Üzerine Etkisi, Tekstil ve Mühendis, 21: 94, 13-17.

Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu

Year 2015, Volume: 19 Issue: 2, 78 - 85, 02.09.2015
https://doi.org/10.19113/sdufbed.97992

Abstract

Bu çalışmada, korona plazma ile muamele edilerek aktive edilmiş pamuklu kumaşlara gümüş nano partiküller (Ag-NP) ve çinko oksit nano partiküller (ZnO-NP)'in yıkamaya karşı kalıcı olarak uygulanması araştırılmıştır. Amaç antibakteriyel özellikli kumaş üretimidir. Çalışmada çapraz bağlayıcı kimyasal madde kullanılmasına gerek olmadan nano partiküllerin korona plazma ile aktive edilmiş pamuk kumaşa yıkamaya karşı dayanıklı olacak şekilde uygulanması araştırılmıştır. Nano partiküllerin uygulanmasında emdirme metodu kullanılmıştır. Kumaşlarda nano partikül varlığı ve kalıcılığı taramalı elektron mikroskobu (SEM) ve enerji dağılımlı X-ışınları (EDX) analizleri ile araştırılmıştır.
Kumaşların antibakteriyel aktivitesi AATCC 100 kantitatif test metodu ile belirlenmiştir. Bitim işlemi uygulanmış kumaşların patlama mukavemeti, hava geçirgenlik özellikleri ile birlikte beyazlık ve sarılık indeksi değerleri de ölçülmüştür. Test ve analiz sonuçlarına göre hem gümüş hem de çinko oksit nano partiküller korona ile ön işlem görmüş pamuk kumaşa yıkama dayanımı olacak şekilde aplikasyonu gerçekleştirilmiştir. Kumaşların gram pozitif S.aureus bakterisine karşı aktiviteye sahip olduğu belirlenmiştir.

References

  • Simoncic, B., Tomsic, B., 2010. Structures of Novel Antimicrobial Agents For Textiles - A review. Textile Research Journal, 80(16), 1721-1737.
  • Lim, S-H., Hudson, S.M., 2004. Application of a Fiber- Reactive Chitosan Derivative to Cotton Fabric as an Antimicrobial Textile Finish. Carbohydrate Polymers, 56, 227-234.
  • Rajendran, R., Balakumar, C., Mohammed Ahammed, H.A., Jayakumar, S., Vaideki, K., Rajesh, E.M., 2010. Use of Zinc Oxide Nano Particles For Production of Antimicrobial Textiles. International Journal of Engineering Science and Technology, 2(1), 202-208.
  • Selvam, S., Sundrarajan, M., 2012. Functionalization of Cotton Fabric with PVP/ZnO Nanoparticles for Improved Reactive Dyeability and Antibacterial Activity. Carbohydrate Polymers, 87,1419-1424.
  • Lee J., Jeong S., 2005. Bacteriostasis and Skin Innoxiousness of Nanosize Silver Colloids on Textile Fabrics. Textile Research Journal, 75, 551-556.
  • Selvam, S., Rajiv Gandhi, R., Suresh, J., Gowri, S., Ravikumar, S., Sundrarajan, M., 2012. Antibacterial Effect of Novel Synthesized Sulfated β-cyclodextrin Crosslinked Cotton Fabric and its Improved Antibacterial Activities with ZnO, TiO2 and Ag Nanoparticles Coating. International Journal of Pharmaceutics, 434, 366-374.
  • Montazer, M; Pakdel, E, Behzadnia, A., 2011. Novel Feature of Nano-Titanium Dioxide on Textiles:
  • Antifelting and Antibakterial Wool. Journal of Applied Polymer Science, 121(6), 3407-3413.
  • Lee, H.J., Yeo, S.Y., Jeong, S.H., 2003. Antibacterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics. Journal of Materials Science, 38, 2199-2204.
  • Gorensek M., Recelj P., 2007. Nanosilver Funtionalized Cotton Fabric. Textile Research Journal, 77(3), 138-141.
  • Gao Y., Cranston R., 2008. Recent Advances in Antimicrobial Treatments of Textiles. Textile
  • Research Journal, 78, 60-72.
  • Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz- Sigl, E., Hasmann, A., Guebitz, G.M., Gedanken, A., 2009. Antibacterial Properties of an in situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics, Applied Materials & Interfaces, 1(2), 361- 366.
  • Raghupathi, R.K., Koodali, T.R., Manna, C.A., 2011. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir, 14; 27(7), 4020- 4028.
  • Uğur, S.Ş., Sarıışık, M., Aktaş, A.H., 2010. Pamuklu Kumaşlarda Antibakteriyel Amaçlı ZnO Nanopartikül İçeren İnce Filmlerin Oluşturulması. Süleyman
  • Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14(1), 95-103.
  • Kang, J. Y., 2004. Textile Plasma Treatment Review- Natural Polymer-Based Textiles. AATCC Review, 4(10), 28-32.
  • Roth, J.R., 1995.Industrial Plasma Engineering Volume 1: Principles. Institute of Physics Publishing, London, 538.
  • Roth, J.R., 2001. Industrial Plasma Engineering Volume 2: Applications to Nonthermal Plasma Processing, Institute of Physics Publishing, London, 516s.
  • Xu, W., Liu., X., 2003. Surface Modification of Polyester Fabric by Corona Discharge Irradiation. European Polymer Journal, 39, 199–202.
  • Carneiro, N., Souto, A.P., Nogueira, C., Madureira, A., Krebs, C., Cooper, S., 2005. Preparation of Cotton Material Using Corona Discharge. Journal of Natural Fibres, 2(4), 53-65.
  • Kalliohakaa, T., Paasia, J., Lemaire, P., 2005. Forced Corona Method For The Evaluation of Fabrics With Conductive Fibres. Journal of Electrostatics, 63, 583- 588.
  • Alay, S., Göktepe, F., Souto, A.P., Carneiro, N.,
  • Fernandes, F., Dias, P., 2007.Improvement of Durable Properties of Surgical Textiles Using Atmospheric Plasma Treatment. Autex Textile Congress, 26-28 June 2007, Tampere-Finlandiya.
  • Çakar, A., 2015. Antibakteriyel Özellikli Kumaş Üretimi Üzerine Bir Araştırma, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 101s, Isparta.
  • Şahin, H.T., Arslan, M.B., Korkut, S., Şahin,C. 2010. Colour Changes of Heat-Treated Woods of Red-Bud Maple. European Hophornbeam and Oak. Color Research & Application, 462-466.
  • Tutak, M., Bilget, Ö., 2014. Pigment Baskı Patı ile Basılmış Nano Boyutta Gümüş/Çinko Partiküllerin Renk Performansı Üzerine Etkisi, Tekstil ve Mühendis, 21: 94, 13-17.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MÜHENDİSLİK ve MİMARLIK BİLİMLERİ
Authors

Ayşe Çakar This is me

Sennur Alay Aksoy

Nazife Korkmaz This is me

Publication Date September 2, 2015
Published in Issue Year 2015 Volume: 19 Issue: 2

Cite

APA Çakar, A., Alay Aksoy, S., & Korkmaz, N. (2015). Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2), 78-85. https://doi.org/10.19113/sdufbed.97992
AMA Çakar A, Alay Aksoy S, Korkmaz N. Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu. SDÜ Fen Bil Enst Der. September 2015;19(2):78-85. doi:10.19113/sdufbed.97992
Chicago Çakar, Ayşe, Sennur Alay Aksoy, and Nazife Korkmaz. “Korona Plazma Ile Aktive Edilmiş Pamuklu Kumaşa Gümüş Ve Çinko Oksit Nano Partikül Aplikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, no. 2 (September 2015): 78-85. https://doi.org/10.19113/sdufbed.97992.
EndNote Çakar A, Alay Aksoy S, Korkmaz N (September 1, 2015) Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 2 78–85.
IEEE A. Çakar, S. Alay Aksoy, and N. Korkmaz, “Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu”, SDÜ Fen Bil Enst Der, vol. 19, no. 2, pp. 78–85, 2015, doi: 10.19113/sdufbed.97992.
ISNAD Çakar, Ayşe et al. “Korona Plazma Ile Aktive Edilmiş Pamuklu Kumaşa Gümüş Ve Çinko Oksit Nano Partikül Aplikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/2 (September 2015), 78-85. https://doi.org/10.19113/sdufbed.97992.
JAMA Çakar A, Alay Aksoy S, Korkmaz N. Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu. SDÜ Fen Bil Enst Der. 2015;19:78–85.
MLA Çakar, Ayşe et al. “Korona Plazma Ile Aktive Edilmiş Pamuklu Kumaşa Gümüş Ve Çinko Oksit Nano Partikül Aplikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 19, no. 2, 2015, pp. 78-85, doi:10.19113/sdufbed.97992.
Vancouver Çakar A, Alay Aksoy S, Korkmaz N. Korona Plazma ile Aktive Edilmiş Pamuklu Kumaşa Gümüş ve Çinko Oksit Nano Partikül Aplikasyonu. SDÜ Fen Bil Enst Der. 2015;19(2):78-85.

e-ISSN: 1308-6529