Research Article
BibTex RIS Cite

Collective Nuclear Level Density Effect On Photonuclear Cross Section of 55Mn Isotope

Year 2020, Volume: 24 Issue: 1, 138 - 142, 20.04.2020
https://doi.org/10.19113/sdufenbed.639828

Abstract

The cross sections of (γ,n), (γ,2n) and (γ,3n) photonuclear reactions of 55Mn isotope were calculated by using TALYS 1.95 computer code from threshold energy to 37 MeV. Obtained theoretical results were compared with the experimental data. In the calculations, collective nuclear level density was included as an optional input in the computer code and the influence of the collective effects (rotational and vibrational) was investigated. As seen from the results, collective semi-classical nuclear level density model can be used as a reliable tool to calculate the cross sections of photonuclear reactions. Also, the effect of nuclear level density function which includes collective contributions was analyzed below 30 MeV gamma energy dominated by giant dipole resonance for these reactions.

References

  • [1] IAEA Nuclear Data Section 2014. Experimental Nuclear Reaction Data (EXFOR), http://www-nds.iaea.org/exfor (Erişim Tarihi: 10.09.2019).
  • [2] Canbula, B., Bulur, R., Canbula, D., Babacan, H. 2014. A Laplace-like Formula for the Energy Dependence of the Nuclear Level Density Parameter. Nuclear Physics A, 929, 54-70.
  • [3] Alvarez, R. A., Berman, B. L., Faul, D. D., Lewis Jr, F. H., Meyer P. 1979. Photoneutron Cross Sections for 55Mn and 59Co. Physical Review C, 20(1), 128.
  • [4] Vagena, E., Stoulos, S. 2017. Average Cross Section Measurement for 162Er (γ, n) Reaction Compared with theoretical Calculations Using TALYS. Nuclear Physics A, 957, 259-273.
  • [5] Hauser, W., Feshbach, H. 1952. The Inelastic Scattering of Neutrons. Physical Review, 87(2), 366.
  • [6] Koning, A. J., Hilaire S., Duijvestijn, M. C. 2007. TALYS-1.0, International Conference of Nuclear Data Science and Technology, 211–214.
  • [7] Herman, M., Capote, R., Carlson, B.V., Oblozinsky, P., Sin M., Trkov, A., Wienke, H., Zerkin, V. 2007. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nuclear Data Sheets 108, 2655–2715.
  • [8] Broeders, C. H. M., Konobeyev, A. Y., Korovin, Y. A., Lunev, V. P., Blann, M. 2006. ALICE/ ASH - Pre-Compound and Evaporation Model Code System for Calculation of Excitation Functions, Energy and Angular Distributions of Emitted Particles in Nuclear Reactions at Intermediate Energies, Report FZKA 7183. http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf (Erişim Tarihi: 28.08.2019).
  • [9] Canbula, B., Canbula, D., Babacan, H. 2015. Analysis of Elastic, Quasielastic, and Inelastic Scattering of Lithium Isotopes on a 28Si Target. Physical Review C, 91(4), 044615.
  • [10] Canbula, B. 2017. Collective Effects in Deuteron Induced Reactions of Aluminum. Nuclear Instruments and Methods Section B, 391, 73-77.
  • [11] Rauscher, T., Thielemann, F. K., Kratz, K. L. 1997. Nuclear Level Density and the Determination of Thermonuclear Rates for Astrophysics. Physical Review C, 56(3), 1613.
  • [12] Okuducu, S., Aktı, N., Saraç, H., Bölükdemir, M., Tel, E. 2009. Calculation of Nuclear Level Density Parameters of Some Light Deformed Medical Raidonuclides Using Collective Excitation Modes of Observed Nuclear Spectra. Modern Physics Letters A 24 (33), 2681-2691. [13] Bethe, H. A. 1937. Nuclear Physics B, Nuclear Dynamics, Theoretical. Reviews of Modern Physics, 9(2), 69.
  • [14] Ignatyuk, A. V., Smirenkin, G., Tishin, A. 1975. Phenomenological Description of Energy Dependence of the Level Density Parameter. Yadernaya Fizika, 21(3),485-490.
  • [15] Grossjean, M. K., Feldmeier, H. 1985. Level Density of a Fermi Gas with Pairing Interactions. Nuclear Physics A, 444(1), 113-132.
  • [16] Demetriou, P., Goriely, S. 2001. Microscopic Nuclear Level Densities for Practical Applications. Nuclear Physics A, 695(1-4), 95-108.
  • [17] Canbula, B., Babacan, H. 2011. Calculation of the Level Density Parameter Using Semi-Classical Approach. Nuclear Physics A, 858(1), 32-47.
  • [18] Wapstra, A. H., Bos, K. 1977. The 1977 Atomic Mass Evaluation: in Four Parts Part II. Nuclear-Reaction and Separation Energies. Atomic Data Nuclear Data Tables, 19, 215-275.

55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi

Year 2020, Volume: 24 Issue: 1, 138 - 142, 20.04.2020
https://doi.org/10.19113/sdufenbed.639828

Abstract

55Mn izotopunun (γ,n), (γ,2n) ve (γ,3n) fotonükleer reaksiyonlarının tesir kesitleri eşik enerjisinden 37 MeV'e kadar TALYS 1.95 bilgisayar kodu kullanılarak hesaplandı. Elde edilen teorik sonuçlar reaksiyonların deneysel verileri ile karşılaştırıldı. Hesaplamalarda, kollektif nükleer seviye yoğunluğu modeli (CSCFGM-Collective semi-classical Fermi gas model) bilgisayar programında opsiyonel bir girdi olarak dahil edildi ve kollektif etkilerin (rotasyonel ve vibrasyonel) fotonükleer tesir kesitleri üzerindeki etkisi araştırıldı. Sonuçlar incelendiğinde, kollektif yarı-klasik nükleer seviye yoğunluğu modelinin bu reaksiyonların tesir kesiti hesaplamalarında güvenilir bir araç olarak kullanılabileceği gösterildi. Ayrıca, dev dipol rezonansın baskın olduğu 30 MeV gama enerjisi altında gerçekleşen reaksiyonlarda kollektif katkıları içeren nükleer seviye yoğunluğu fonksiyonunun etkisi analiz edildi.

References

  • [1] IAEA Nuclear Data Section 2014. Experimental Nuclear Reaction Data (EXFOR), http://www-nds.iaea.org/exfor (Erişim Tarihi: 10.09.2019).
  • [2] Canbula, B., Bulur, R., Canbula, D., Babacan, H. 2014. A Laplace-like Formula for the Energy Dependence of the Nuclear Level Density Parameter. Nuclear Physics A, 929, 54-70.
  • [3] Alvarez, R. A., Berman, B. L., Faul, D. D., Lewis Jr, F. H., Meyer P. 1979. Photoneutron Cross Sections for 55Mn and 59Co. Physical Review C, 20(1), 128.
  • [4] Vagena, E., Stoulos, S. 2017. Average Cross Section Measurement for 162Er (γ, n) Reaction Compared with theoretical Calculations Using TALYS. Nuclear Physics A, 957, 259-273.
  • [5] Hauser, W., Feshbach, H. 1952. The Inelastic Scattering of Neutrons. Physical Review, 87(2), 366.
  • [6] Koning, A. J., Hilaire S., Duijvestijn, M. C. 2007. TALYS-1.0, International Conference of Nuclear Data Science and Technology, 211–214.
  • [7] Herman, M., Capote, R., Carlson, B.V., Oblozinsky, P., Sin M., Trkov, A., Wienke, H., Zerkin, V. 2007. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nuclear Data Sheets 108, 2655–2715.
  • [8] Broeders, C. H. M., Konobeyev, A. Y., Korovin, Y. A., Lunev, V. P., Blann, M. 2006. ALICE/ ASH - Pre-Compound and Evaporation Model Code System for Calculation of Excitation Functions, Energy and Angular Distributions of Emitted Particles in Nuclear Reactions at Intermediate Energies, Report FZKA 7183. http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf (Erişim Tarihi: 28.08.2019).
  • [9] Canbula, B., Canbula, D., Babacan, H. 2015. Analysis of Elastic, Quasielastic, and Inelastic Scattering of Lithium Isotopes on a 28Si Target. Physical Review C, 91(4), 044615.
  • [10] Canbula, B. 2017. Collective Effects in Deuteron Induced Reactions of Aluminum. Nuclear Instruments and Methods Section B, 391, 73-77.
  • [11] Rauscher, T., Thielemann, F. K., Kratz, K. L. 1997. Nuclear Level Density and the Determination of Thermonuclear Rates for Astrophysics. Physical Review C, 56(3), 1613.
  • [12] Okuducu, S., Aktı, N., Saraç, H., Bölükdemir, M., Tel, E. 2009. Calculation of Nuclear Level Density Parameters of Some Light Deformed Medical Raidonuclides Using Collective Excitation Modes of Observed Nuclear Spectra. Modern Physics Letters A 24 (33), 2681-2691. [13] Bethe, H. A. 1937. Nuclear Physics B, Nuclear Dynamics, Theoretical. Reviews of Modern Physics, 9(2), 69.
  • [14] Ignatyuk, A. V., Smirenkin, G., Tishin, A. 1975. Phenomenological Description of Energy Dependence of the Level Density Parameter. Yadernaya Fizika, 21(3),485-490.
  • [15] Grossjean, M. K., Feldmeier, H. 1985. Level Density of a Fermi Gas with Pairing Interactions. Nuclear Physics A, 444(1), 113-132.
  • [16] Demetriou, P., Goriely, S. 2001. Microscopic Nuclear Level Densities for Practical Applications. Nuclear Physics A, 695(1-4), 95-108.
  • [17] Canbula, B., Babacan, H. 2011. Calculation of the Level Density Parameter Using Semi-Classical Approach. Nuclear Physics A, 858(1), 32-47.
  • [18] Wapstra, A. H., Bos, K. 1977. The 1977 Atomic Mass Evaluation: in Four Parts Part II. Nuclear-Reaction and Separation Energies. Atomic Data Nuclear Data Tables, 19, 215-275.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bora Canbula 0000-0003-1088-2804

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Canbula, B. (2020). 55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 138-142. https://doi.org/10.19113/sdufenbed.639828
AMA Canbula B. 55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi. J. Nat. Appl. Sci. April 2020;24(1):138-142. doi:10.19113/sdufenbed.639828
Chicago Canbula, Bora. “55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 138-42. https://doi.org/10.19113/sdufenbed.639828.
EndNote Canbula B (April 1, 2020) 55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 138–142.
IEEE B. Canbula, “55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi”, J. Nat. Appl. Sci., vol. 24, no. 1, pp. 138–142, 2020, doi: 10.19113/sdufenbed.639828.
ISNAD Canbula, Bora. “55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 138-142. https://doi.org/10.19113/sdufenbed.639828.
JAMA Canbula B. 55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi. J. Nat. Appl. Sci. 2020;24:138–142.
MLA Canbula, Bora. “55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 138-42, doi:10.19113/sdufenbed.639828.
Vancouver Canbula B. 55Mn İzotopunun Fotonükleer Tesir Kesitleri Üzerinde Kollektif Nükleer Seviye Yoğunluğunun Etkisi. J. Nat. Appl. Sci. 2020;24(1):138-42.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.