Research Article
BibTex RIS Cite

CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu

Year 2022, Volume: 26 Issue: 2, 223 - 228, 20.08.2022
https://doi.org/10.19113/sdufenbed.1033017

Abstract

Bu çalışmada, bakır bizmutat (CuBi2O4) ve elektro-indirgenmiş grafen oksitten (ERGO) oluşan nanokompozit (CuBi2O4/ERGO) materyal tek kapta yeni bir elektrokimyasal teknik kullanılarak nikel (Ni) köpük elektrot yüzeyinde başarıyla sentezlenmiştir. Çözelti ortamı olarak Cu+2, Bi+3 ve grafen oksit (GO) ihtiva eden çözelti karışımı kullanılmıştır. Öncelikle oksijen gazı geçirilen çözelti ortamında Ni köpük elektrot yüzeyinde hidroksit türleri depozit edilmiştir. Sonrasında termal tavlama yapılarak oksit formuna dönüşüm sağlanmıştır. Elektrokimyasal olarak sentezlenen CuBi2O4/ERGO modifiye elektrotlar X-ışını kırınımı (XRD), X-ışını fotoelektron spektroskopisi (XPS), Raman, alan emisyonlu taramalı elektron mikroskobu (FE-SEM) ve enerji dağılım spektroskopisi (EDS) teknikleri kullanılarak karakterize edilmiştir. Yapılan karakterizasyon işlemleri nanokompozitin hem CuBi2O4 hem de ERGO yapısını bir arada içerdiğini göstermiştir.

Supporting Institution

Atatürk Üniversitesi BAP

Project Number

FBA-2020-7553

References

  • [1] Janani, G., Chae, Y., Surendran, S., Sim, Y., Park, W., Kim, J. K., Sim, U. 2020. Rational Design of Spinel Oxide Nanocomposites with Tailored Electrochemical Oxygen Evolution and Reduction Reactions for ZincAir Batteries. Appl. Sci., 10(9), 3165.
  • [2] Berglund, S.P., Abdi, F.F., Bogdanoff, P., Chemseddine, A., Friedrich, D., Krol, R. 2016. Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting. Chem. Mater., 28(12), 4231–4242.
  • [3] Wang, F., Septina, W., Chemseddine, A., Abdi, F.F., Friedrich, D., Bogdanoff, P., Krol, R., Tilley, S.D., Berglund, S.P. 2017. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency. J. Am. Chem. Soc., 139(42), 15094–15103.
  • [4] Sharma, G., Zhao, Z., Sarker, P., Nail, B.A., Wang, J., Huda, M.N., Osterloh, F.E. 2016. Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. J. Mater. Chem. A, 4, 2936-2942.
  • [5] Jia, L., Yang, H., Deng, J., Chen, J., Zhou, Y., Ding, P., Li, L., Han, N., Li, Y. 2019. Copper‐Bismuth Bimetallic Microspheres for Selective Electrocatalytic Reduction of CO2 to Formate. Chinese Journal of Chemistry, 37(5), 497-500.
  • [6] Ensafi, A.A., Rezaei, N.A.B. 2015. Electrochemical preparation of CuBi2O4 nanoparticles on nanoporous stainless steel as a binder-free supercapacitor electrode. Journal of Alloys and Compounds, 652, 39-47.
  • [7] Pulipaka, S., Boni, N., Ummethala, G., Meduri, P.2020. CuO/CuBi2O4 heterojunction photocathode: High stability and current densities for solar water splitting. Journal of Catalysis, 387, 17-27.
  • [8] Dumitru, R., Negrea, S., Păcurariu, C., Surdu, A., Ianculescu, A., Pop, A., Manea, F. 2021. CuBi2O4 Synthesis, Characterization and Application in Sensitive Amperometric/Voltammetric Detection of Amoxicillin in Aqueous Solutions. Nanomaterials, 11(3), 740.
  • [9] Wu, C.H., Onno, E., Lin, C.L. 2017. CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 for highly sensitive and selective electrochemical detection of glucose. Electrochimica Acta, 229, 129–140.
  • [10] Nakabayashi, Y., Nishikawa, M., Nosaka, Y. 2014. Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production. Electrochimica Acta, 125, 191-198.
  • [11] Xie, Y., Zhang, Y., Yang, G., Liu, C., Wang, J. 2013. Hydrothermal synthesis of CuBi2O4 nanosheets and their photocatalytic behavior under visible light irradiation. Materials Letters, 107, 291-294.
  • [12] Abdulkarem, A.M., Li, J., Aref, A.A., Ren, L., Elssfah, E.M., Wang, H., Ge, Y., Yu, Y. 2011. CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties. Materials Research Bulletin, 46(9), 1443-1450.
  • [13] Duployer, B., Tenailleau, C., Thimont, Y., Lenormand, P., Barnabé, A., Presmanes, L. 2020. Preparation and study of CuBi2O4 thin films by RF magnetron sputtering. Materials Research Bulletin, 130, 110940.
  • [14] Zhang, Y., Wang, L., Xu, X. 2021. A bias-free CuBi2O4–CuWO4 tandem cell for solar-driven water splitting. Inorg. Chem. Front., 2021, 3863-3870.
  • [15] Wang, F., Chemseddine, A., Abdi, F.F., Krol, R.V., Berglund, S.P. 2017. Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films. J. Mater. Chem., 5, 12838-12847.
  • [16] Zhang, Y.C., Yang, H., Wang, W.P., Zhang, H.M., Li, R.S., Wang, X.X., Yu, R.C. 2016. A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. Journal of Alloys and Compounds, 684, 707-713.
  • [17] Jiwen, Z., Yanyan, J., Wenyuan, G., Hongshun, H. 2015. Synthesis and visible photocatalytic activity of new photocatalyst MBi2O4(M = Cu, Zn). Journal of Materials Science: Materials in Electronics, 26(3), 1866-1873.
  • [18] Muthukrishnaraj, A., Vadivel, S., Joni, I.M., Balasubramanian, N. 2015. Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceramics International, 41(5), 6164-6168.
  • [19] Hahn, N.T., Holmberg, V.C., Korgel, B.A., Mullins, C.B. 2012. Electrochemical Synthesis and Characterization of p-CuBi2O4 Thin Film Photocathodes. J. Phys. Chem. C, 116(10), 6459–6466.
  • [20] Elbasuney, S., El-Sayyad, G.S., Tantawy, H., Hashem, A.H. 2021. Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC Adv., 11, 25961-25975.
  • [21] Warsi, M.F., Bashir, B., Zulfiqar, S., Aadil, M., Khalid, M.U., Agboola, P.O., Shakir, I., Yousuf, M. A., Shahid, M. 2021. Mn1-xCuxO2/ reduced graphene oxide nanocomposites: Synthesis, characterization, and evaluation of visible light mediated catalytic studies. Ceramics International, 47(4), 5044-5053.
  • [22] Shah, A.K., Sahu, T.K., Banik, A., Gogoi, D., Peela, N.R., Qureshi, M. 2019. Reduced graphene oxide modified CuBi2O4 as an efficient and noble metal free photocathode for superior photo electrochemical hydrogen production. Sustainable Energy Fuels, 3, 1554-1561.
  • [23] Doğan, H.Ö. 2019. Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode. Solid State Sciences, 98, 106029.
  • [24] Therese, G.H.A., Kamath, P.V. 2000. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater., 12, 1195-1204.
  • [25] Kang, D., Hill, J.C., Park, Y., Choi, K. 2016. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi2O4 and Ag-Doped CuBi2O4 Photocathodes. Chem. Mater., 28(12), 4331–4340.
  • [26] Doğan, H.Ö., Ekinci, D., Demir, Ü. 2013. Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surface science, 611, 54-59.
  • [27] Doğan, H.Ö., 2014. Grafit Oksitin Elektrokimyasal İndirgenmesi ile Grafen ve Metal-Grafen kompozit Sentezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 233s, Erzurum.
  • [28] Öznülüer, T., Demir, Ü., Doğan, H.Ö. 2018. Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation. Applied Catalysis B: Environmental, 235, 56–65.

Synthesis and Characterization of CuBi2O4/Electro-reduced Graphene Oxide Nanocomposites using A New Electrochemical Technique

Year 2022, Volume: 26 Issue: 2, 223 - 228, 20.08.2022
https://doi.org/10.19113/sdufenbed.1033017

Abstract

In this study, a nanocomposite material consisting of copper bismuthate (CuBi2O4) and reduced graphene oxide (ERGO) (CuBi2O4/ERGO) was successfully synthesized on the nickel (Ni) foam electrode surface using a new one-pot electrochemical technique. A mixture solution containing Cu+2, Bi+3, and graphene oxide (GO) was used as the solution medium. Firstly, the hydroxide species were deposited on Ni electrode in the solution medium, in which oxygen gas was passed. Afterward, thermal annealing was performed and the hydroxide species were converted to the oxide form. Electrochemically synthesized CuBi2O4/ERGO modified electrodes were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, field emission scanning electron microscopy (FE-SEM), and energy dispersion spectroscopy (EDS) techniques. The characterization processes showed that the nanocomposite contains both CuBi2O4 and ERGO structures together.

Project Number

FBA-2020-7553

References

  • [1] Janani, G., Chae, Y., Surendran, S., Sim, Y., Park, W., Kim, J. K., Sim, U. 2020. Rational Design of Spinel Oxide Nanocomposites with Tailored Electrochemical Oxygen Evolution and Reduction Reactions for ZincAir Batteries. Appl. Sci., 10(9), 3165.
  • [2] Berglund, S.P., Abdi, F.F., Bogdanoff, P., Chemseddine, A., Friedrich, D., Krol, R. 2016. Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting. Chem. Mater., 28(12), 4231–4242.
  • [3] Wang, F., Septina, W., Chemseddine, A., Abdi, F.F., Friedrich, D., Bogdanoff, P., Krol, R., Tilley, S.D., Berglund, S.P. 2017. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency. J. Am. Chem. Soc., 139(42), 15094–15103.
  • [4] Sharma, G., Zhao, Z., Sarker, P., Nail, B.A., Wang, J., Huda, M.N., Osterloh, F.E. 2016. Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. J. Mater. Chem. A, 4, 2936-2942.
  • [5] Jia, L., Yang, H., Deng, J., Chen, J., Zhou, Y., Ding, P., Li, L., Han, N., Li, Y. 2019. Copper‐Bismuth Bimetallic Microspheres for Selective Electrocatalytic Reduction of CO2 to Formate. Chinese Journal of Chemistry, 37(5), 497-500.
  • [6] Ensafi, A.A., Rezaei, N.A.B. 2015. Electrochemical preparation of CuBi2O4 nanoparticles on nanoporous stainless steel as a binder-free supercapacitor electrode. Journal of Alloys and Compounds, 652, 39-47.
  • [7] Pulipaka, S., Boni, N., Ummethala, G., Meduri, P.2020. CuO/CuBi2O4 heterojunction photocathode: High stability and current densities for solar water splitting. Journal of Catalysis, 387, 17-27.
  • [8] Dumitru, R., Negrea, S., Păcurariu, C., Surdu, A., Ianculescu, A., Pop, A., Manea, F. 2021. CuBi2O4 Synthesis, Characterization and Application in Sensitive Amperometric/Voltammetric Detection of Amoxicillin in Aqueous Solutions. Nanomaterials, 11(3), 740.
  • [9] Wu, C.H., Onno, E., Lin, C.L. 2017. CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 for highly sensitive and selective electrochemical detection of glucose. Electrochimica Acta, 229, 129–140.
  • [10] Nakabayashi, Y., Nishikawa, M., Nosaka, Y. 2014. Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production. Electrochimica Acta, 125, 191-198.
  • [11] Xie, Y., Zhang, Y., Yang, G., Liu, C., Wang, J. 2013. Hydrothermal synthesis of CuBi2O4 nanosheets and their photocatalytic behavior under visible light irradiation. Materials Letters, 107, 291-294.
  • [12] Abdulkarem, A.M., Li, J., Aref, A.A., Ren, L., Elssfah, E.M., Wang, H., Ge, Y., Yu, Y. 2011. CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties. Materials Research Bulletin, 46(9), 1443-1450.
  • [13] Duployer, B., Tenailleau, C., Thimont, Y., Lenormand, P., Barnabé, A., Presmanes, L. 2020. Preparation and study of CuBi2O4 thin films by RF magnetron sputtering. Materials Research Bulletin, 130, 110940.
  • [14] Zhang, Y., Wang, L., Xu, X. 2021. A bias-free CuBi2O4–CuWO4 tandem cell for solar-driven water splitting. Inorg. Chem. Front., 2021, 3863-3870.
  • [15] Wang, F., Chemseddine, A., Abdi, F.F., Krol, R.V., Berglund, S.P. 2017. Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films. J. Mater. Chem., 5, 12838-12847.
  • [16] Zhang, Y.C., Yang, H., Wang, W.P., Zhang, H.M., Li, R.S., Wang, X.X., Yu, R.C. 2016. A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. Journal of Alloys and Compounds, 684, 707-713.
  • [17] Jiwen, Z., Yanyan, J., Wenyuan, G., Hongshun, H. 2015. Synthesis and visible photocatalytic activity of new photocatalyst MBi2O4(M = Cu, Zn). Journal of Materials Science: Materials in Electronics, 26(3), 1866-1873.
  • [18] Muthukrishnaraj, A., Vadivel, S., Joni, I.M., Balasubramanian, N. 2015. Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceramics International, 41(5), 6164-6168.
  • [19] Hahn, N.T., Holmberg, V.C., Korgel, B.A., Mullins, C.B. 2012. Electrochemical Synthesis and Characterization of p-CuBi2O4 Thin Film Photocathodes. J. Phys. Chem. C, 116(10), 6459–6466.
  • [20] Elbasuney, S., El-Sayyad, G.S., Tantawy, H., Hashem, A.H. 2021. Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC Adv., 11, 25961-25975.
  • [21] Warsi, M.F., Bashir, B., Zulfiqar, S., Aadil, M., Khalid, M.U., Agboola, P.O., Shakir, I., Yousuf, M. A., Shahid, M. 2021. Mn1-xCuxO2/ reduced graphene oxide nanocomposites: Synthesis, characterization, and evaluation of visible light mediated catalytic studies. Ceramics International, 47(4), 5044-5053.
  • [22] Shah, A.K., Sahu, T.K., Banik, A., Gogoi, D., Peela, N.R., Qureshi, M. 2019. Reduced graphene oxide modified CuBi2O4 as an efficient and noble metal free photocathode for superior photo electrochemical hydrogen production. Sustainable Energy Fuels, 3, 1554-1561.
  • [23] Doğan, H.Ö. 2019. Ethanol electro-oxidation in alkaline media on Pd/electrodeposited reduced graphene oxide nanocomposite modified nickel foam electrode. Solid State Sciences, 98, 106029.
  • [24] Therese, G.H.A., Kamath, P.V. 2000. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater., 12, 1195-1204.
  • [25] Kang, D., Hill, J.C., Park, Y., Choi, K. 2016. Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi2O4 and Ag-Doped CuBi2O4 Photocathodes. Chem. Mater., 28(12), 4331–4340.
  • [26] Doğan, H.Ö., Ekinci, D., Demir, Ü. 2013. Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surface science, 611, 54-59.
  • [27] Doğan, H.Ö., 2014. Grafit Oksitin Elektrokimyasal İndirgenmesi ile Grafen ve Metal-Grafen kompozit Sentezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 233s, Erzurum.
  • [28] Öznülüer, T., Demir, Ü., Doğan, H.Ö. 2018. Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation. Applied Catalysis B: Environmental, 235, 56–65.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hülya Öztürk Doğan 0000-0002-4072-7744

Bingül Kurt Urhan 0000-0002-8742-6789

Project Number FBA-2020-7553
Publication Date August 20, 2022
Published in Issue Year 2022 Volume: 26 Issue: 2

Cite

APA Öztürk Doğan, H., & Kurt Urhan, B. (2022). CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 223-228. https://doi.org/10.19113/sdufenbed.1033017
AMA Öztürk Doğan H, Kurt Urhan B. CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu. J. Nat. Appl. Sci. August 2022;26(2):223-228. doi:10.19113/sdufenbed.1033017
Chicago Öztürk Doğan, Hülya, and Bingül Kurt Urhan. “CuBi2O4/Elektro-Indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi Ve Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 2 (August 2022): 223-28. https://doi.org/10.19113/sdufenbed.1033017.
EndNote Öztürk Doğan H, Kurt Urhan B (August 1, 2022) CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 223–228.
IEEE H. Öztürk Doğan and B. Kurt Urhan, “CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu”, J. Nat. Appl. Sci., vol. 26, no. 2, pp. 223–228, 2022, doi: 10.19113/sdufenbed.1033017.
ISNAD Öztürk Doğan, Hülya - Kurt Urhan, Bingül. “CuBi2O4/Elektro-Indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi Ve Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (August 2022), 223-228. https://doi.org/10.19113/sdufenbed.1033017.
JAMA Öztürk Doğan H, Kurt Urhan B. CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu. J. Nat. Appl. Sci. 2022;26:223–228.
MLA Öztürk Doğan, Hülya and Bingül Kurt Urhan. “CuBi2O4/Elektro-Indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi Ve Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 2, 2022, pp. 223-8, doi:10.19113/sdufenbed.1033017.
Vancouver Öztürk Doğan H, Kurt Urhan B. CuBi2O4/Elektro-indirgenmiş Grafen Oksit Nanokompozitlerinin Yeni Bir Elektrokimyasal Teknik Kullanılarak Sentezi ve Karakterizasyonu. J. Nat. Appl. Sci. 2022;26(2):223-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.