Research Article
BibTex RIS Cite

CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması

Year 2022, Volume: 26 Issue: 2, 321 - 328, 20.08.2022
https://doi.org/10.19113/sdufenbed.1066542

Abstract

Elektro-eğirme metodu ile sentezlenen metal oksit nanofiberleri üzerine hidrotermal yöntem ile sentezlenen delafosit parçacıkları ağırlıkça farklı oranlarda dekore edilerek heteroyapılı fotokatalizörler elde edilmiştir. Kalay kaynaklı metal oksitin, bakır kaynaklı delafositin ve oluşturdukları heteroyapılı malzemelerin mikroyapısal, morfolojik, optik ve elektrokimyasal özellikleri karakterize edilmiş ve bu malzemelerin başarılı bir şekilde üretildiği tespit edilmiştir. Ayrıca farklı ağırlık yüzdelerinde delafosit dekore edilen heteroyapıların aktiviteler sistematik olarak incelenmiş, en iyi sonucu veren numunenin Ağ.%0,40 delafosit içeren metal oksit nanofiberi olduğu görülmüştür. Bu fotokatalizör kullanılarak görünür ışık ışıması altında 90 dk’da metilen mavisi (MM) boyasının neredeyse tamamına yakınının (%95,8) bozunduğu tespit edilmiştir. Metal oksit nanofiber fotokatalizörüne kıyasla delafosit dekore edilmiş metal oksit fotokatalizörü MM boyasının bozunma hızında %58,5’lik bir artış sağlamıştır. Fotokatalitik aktivitedeki bu gelişme; metal oksit nanofiberinin dar bant aralığına sahip delafosit parçacıkları ile oluşturduğu heteroyapının daha fazla ışığı soğurumu sayesinde daha fazla e--h+ çifti oluşturması ile ilişkilendirilebilir.

Supporting Institution

Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri (KTUN-BAP) Fonu

Project Number

202219056

Thanks

Bu çalışma, Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri Fonu tarafından 202219056 numaralı hibe ile desteklenmiştir. Yazar, Doç. Dr. Volkan KALEM ve Doç. Dr. Hasan AKYILDIZ’a verdikleri destekten dolayı ayrıca teşekkür eder.

References

  • [1] Mandal, S., Adhikari, S., Pu, S., Wang, X., Kim, D. H., Patel, R. K. 2019. Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere, 234, 596-607.
  • [2] Shaban, M., Abukhadra, M. R., Hamd, A., Amin, R. R., Khalek, A. A. 2017. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. Journal of environmental management, 204, 189-199.
  • [3] Gusain, R., Gupta, K., Joshi, P., Khatri, O.P. 2019. Adsorp-tive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in colloid and interface science, 272, 1-16.
  • [4] Mishra, A., Mehta, A., Basu, S. 2018. Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review. Journal of environmental chemical engineering, 6, 6088-6107.
  • [5] Pereira, W. S., Gozzo, C. B., Longo, E., Leite, E. R., Sczancoski, J. C. 2019. Investigation on the photocatalytic performance of Ag4P2O7 microcrystals for the degradation of organic pollutants. Applied Surface Science, 493, 1195-1204.
  • [6] Isik, Z., Bilici, Z., Adiguzel, S. K., Yatmaz, H. C., Dizge, N. 2019. Entrapment of TiO2 and ZnO powders in alginate beads: Photocatalytic and reuse efficiencies for dye solutions and toxicity effect for DNA damage. Environmental Technology & Innovation, 14, 100358.
  • [7] Kanakaraju, D., Glass, B. D., Oelgemöller, M., 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. Journal of environmental management, 219 189-207.
  • [8] Rosman, N., Salleh, W., Mohamed, M. A., Jaafar, J., Ismail, A., Harun, Z. 2018. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. Journal of colloid and interface science, 532, 236-260.
  • [9] Sharma, B., Boruah, P. K., Yadav, A., Das, M. R. 2018. TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. Journal of environmental chemical engineering, 6, 134-145.
  • [10] Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., Jonnalagadda, S. B., Thakur, V. K. 2019. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today. 15, 494-524.
  • [11] Zhu, D., Zhou, Q. 2019. Action and mechanism of semi-conductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology, Monitoring& Management, 12, 100255.
  • [12] Yamada, T., Otsubo, K., Makiura, R., Kitagawa, H. 2013. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chemical Society Reviews, 42, 6655-6669.
  • [13] Spadavecchia, J., Apchain, E., Albéric, M., Fontan, E., Reiche, I. 2014. One‐Step Synthesis of Collagen Hybrid Gold Nanoparticles and Formation on Egyptian‐like Gold‐Plated Archaeological Ivory. Angewandte Chemie, 126, 8503-8506.
  • [14] Bargougui, R., Omri, K., Mhemdi, A., Ammar, S. 2015. Synthesis and characterization of SnO2 nanoparticles: Effect of hydrolysis rate on the optical properties. Advantage Materials Letters, 6 816-819.
  • [15] Williams, O. L. 2007. A theoretical study of charge con- finement in quantum dots: Modelling the SnO2 charge writing process. Swansea University (United Kingdom).
  • [16] Pálinkás, A., Molnár, G., Magda, G. Z., C. Hwang, C., Tapasztó, L., Samuely, P., Szabó, P., Osváth, Z. 2017. Novel graphene/Sn and graphene/SnOx hybrid nanostructures: Induced superconductivity and band gaps revealed by scanning probe measurements. Carbon, 124 611-617.
  • [17] Lim, S. S., Baek, I. H., Kim, K. C., Baek, S. H., Park, H. H., Kim, J. S., Kim, S. K. 2019. Atomic layer deposition of SnO2 thin films using tetraethyltin and H2O2, Ceramics International, 45, 20600-20605.
  • [18] T. ÖZTÜRK, Mezo-gözenekli SnO2 Nanokom-pozitlerin Fotokatalitik Aktivitelerinin İncelenmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25 (2021) 466-472.
  • [19] Yadav, A. K., Malik, H., Chandel, S. 2014. Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renewable and Sustainable Energy Reviews, 31, 509-519.
  • [20] Bhattacharjee, A., Ahmaruzzaman, M., Sinha, T. 2015. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 751-760.
  • [21] Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S., Hamilton, J. W., Byrne, J. A., O'shea, K. 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125 331-349.
  • [22] Dursun, S., Kaya, I. C., Kalem, V., Akyildiz, H. 2018. UV/visible light active CuCrO2 nanoparticle– SnO2 nanofiber p–n heterostructured photocatalysts for photocatalytic applications. Dalton Transactions, 47, 14662-14678.
  • [23] Xiong, D., Chang, H., Zhang, Q., Tian, S., Liu, B., Zhao, X. 2015. Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 347, 747-754.
  • [24] Ahmad, T., Phul, R., Alam, P., Lone, I. H., Shahazad, M., Ahmed, J., Ahamad, T., Alshehri, S. M. 2017. Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles. RSC advances, 7, 27549-27557.
  • [25] Dong, F., Wang, Z., Li, Y., Ho, W. K., Lee, S. 2014. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environmental science& technology, 48, 10345-10353.
  • [26] Santra, S., Das, N., Chattopadhyay, K. 2013. Wide band gap p-type nanocrystalline CuBO2 as a novel UV photocatalyst. Materials Research Bulletin, 48 2669-2677.
  • [27] Yu, M., Draskovic, T. I., Wu, Y. 2014. Cu (I)-based dela-fossite compounds as photocathodes in p-type dye-sensitized solar cells, Physical Chemistry Chemical Physics, 16, 5026-5033.
  • [28] Thirumalairajan, S., V., Mastelaro, R., Escanhoela Jr, C. A. 2014. In-depth understanding of the relation between CuAlO2 particle size and morphology for ozone gas sensor detection at a nanoscale level, ACS applied materials& interfaces, 6, 21739-21749.
  • [29] Bouakaz, H., Abbas, M., Brahimi, R., Trari, M. 2021. Physical properties of the delafossite CuCoO2 synthesized by co-precipitation/hydrothermal route. Materials Science in Semiconductor Processing, 136 106132.
  • [30] Kurita, K., Yagisawa, M., Okazaki, R. 2021. Electrical resistivity and thermopower of hole-doped delafossite CuCoO2 polycrystals. Japanese Journal of Applied Physics, 60, 013001.
  • [31] Isacfranklin, M., Yuvakkumar, R., Ravi, G., Panni-para, M., Al-Sehemi, A. G. 2021. CuCoO2 electrodes for supercapacitor applications. Materials Letters, 296, 129930.
  • [32] Zhong, X., He, H., Du, J., Ren, Q., Huang, J., Tang, Y., Wang, J., Yang, L., Dong, F., Bian, L. 2019. Boosting solar water oxidation activity and stability of BiVO4 photoanode through the Co-catalytic effect of CuCoO2. Electrochimica Acta, 304, 301-311.
  • [33] Dursun, S., Akyildiz, H., Kalem, V. 2021. PMN-PT nanoparticle/SnO2 nanofiber heterostructures: Enhanced photocatalytic degradation performance by ultrasonic wave induced piezoelectric field. Journal of Alloys and Compounds, 889, 161769.
  • [34] Dursun, S., Kaya, İ. C., Kocabaş, M., Akyildiz, H., Kalem, V. 2020. Visible light active heterostructured photocatalyst system based on CuO plate‐like particles and SnO2 nanofibers. International Journal of Applied Ceramic Technology, 17, 1479-1489.
  • [35] Du, Z., Xiong, D., Verma, S. K., Liu, B., Zhao, X., Liu, L., Li, H. 2018. A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorganic Chemistry Frontiers, 5, 183-188.
  • [36] Poienar, M., Sfirloaga, P., Martin, C., Ursu, D., Vlazan, P. 2018. Hydrothermal synthesis of crednerite CuMn1−xMxO2 (M=Mg, Al; x= 0–0.08): structural characterisation and magnetic properties. Journal of Materials Science, 53, 2389-2395.
  • [37] Du, Z., Xiong, D., Qian, J., Zhang, T. Bai, J. Fang, D., Li, H. 2019. Investigation of the structural, optical and electrical properties of Ca2+ doped CuCoO2 nanosheets. Dalton Transactions, 48, 13753-13759.
  • [38] Tauc, J., Grigorovici, R., Vancu, A. 1966. Optical properties and electronic structure of amorphous germanium, physica status solidi (b), 15, 627-637.
  • [39] Chu, W., Choy, W., So, T. 2007. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. Journal of hazardous materials, 141, 86-91.
  • [40] Shi, F. 2012. Ceramic Coatings: Applications in Engineering. BoD–Books on Demand, 12p.

Production of New Metal Oxide Composites with CuCoO2 Particles and Their Use in Pollutant Removal

Year 2022, Volume: 26 Issue: 2, 321 - 328, 20.08.2022
https://doi.org/10.19113/sdufenbed.1066542

Abstract

Heterostructured photocatalysts were obtained by decorating delafossite particles synthesized by hydrothermal method on metal oxide nanofibers synthesized by electrospinning method at different weight ratios. Microstructural, morphological, optical and electrochemical properties of tin-sourced metal oxide, copper-derived delafossite and the heterostructured materials they formed were characterized and it was determined that these materials were produced successfully. In addition, the activities of heterostructures decorated with delafossite at different weight percentages were systematically examined, and it was seen that the best result was metal oxide nanofiber containing 0.40 wt.% delafossite. It was determined that almost all (95.8%) of the methylene blue (MB) dye was degraded in 90 min under visible light irradiation. Compared to the metal oxide nanofiber photocatalyst, the delafossite decorated metal oxide photocatalyst provided a 58.5% increase in the degradation rate of the MB dye. This improvement in photocatalytic activity; It can be associated with the heterostructure formed by the metal oxide nanofiber with the narrow band gap delafossite particles, forming more e--h+ pairs thanks to more light absorption.

Project Number

202219056

References

  • [1] Mandal, S., Adhikari, S., Pu, S., Wang, X., Kim, D. H., Patel, R. K. 2019. Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere, 234, 596-607.
  • [2] Shaban, M., Abukhadra, M. R., Hamd, A., Amin, R. R., Khalek, A. A. 2017. Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. Journal of environmental management, 204, 189-199.
  • [3] Gusain, R., Gupta, K., Joshi, P., Khatri, O.P. 2019. Adsorp-tive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in colloid and interface science, 272, 1-16.
  • [4] Mishra, A., Mehta, A., Basu, S. 2018. Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review. Journal of environmental chemical engineering, 6, 6088-6107.
  • [5] Pereira, W. S., Gozzo, C. B., Longo, E., Leite, E. R., Sczancoski, J. C. 2019. Investigation on the photocatalytic performance of Ag4P2O7 microcrystals for the degradation of organic pollutants. Applied Surface Science, 493, 1195-1204.
  • [6] Isik, Z., Bilici, Z., Adiguzel, S. K., Yatmaz, H. C., Dizge, N. 2019. Entrapment of TiO2 and ZnO powders in alginate beads: Photocatalytic and reuse efficiencies for dye solutions and toxicity effect for DNA damage. Environmental Technology & Innovation, 14, 100358.
  • [7] Kanakaraju, D., Glass, B. D., Oelgemöller, M., 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. Journal of environmental management, 219 189-207.
  • [8] Rosman, N., Salleh, W., Mohamed, M. A., Jaafar, J., Ismail, A., Harun, Z. 2018. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. Journal of colloid and interface science, 532, 236-260.
  • [9] Sharma, B., Boruah, P. K., Yadav, A., Das, M. R. 2018. TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. Journal of environmental chemical engineering, 6, 134-145.
  • [10] Hasija, V., Raizada, P., Sudhaik, A., Sharma, K., Kumar, A., Singh, P., Jonnalagadda, S. B., Thakur, V. K. 2019. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today. 15, 494-524.
  • [11] Zhu, D., Zhou, Q. 2019. Action and mechanism of semi-conductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology, Monitoring& Management, 12, 100255.
  • [12] Yamada, T., Otsubo, K., Makiura, R., Kitagawa, H. 2013. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chemical Society Reviews, 42, 6655-6669.
  • [13] Spadavecchia, J., Apchain, E., Albéric, M., Fontan, E., Reiche, I. 2014. One‐Step Synthesis of Collagen Hybrid Gold Nanoparticles and Formation on Egyptian‐like Gold‐Plated Archaeological Ivory. Angewandte Chemie, 126, 8503-8506.
  • [14] Bargougui, R., Omri, K., Mhemdi, A., Ammar, S. 2015. Synthesis and characterization of SnO2 nanoparticles: Effect of hydrolysis rate on the optical properties. Advantage Materials Letters, 6 816-819.
  • [15] Williams, O. L. 2007. A theoretical study of charge con- finement in quantum dots: Modelling the SnO2 charge writing process. Swansea University (United Kingdom).
  • [16] Pálinkás, A., Molnár, G., Magda, G. Z., C. Hwang, C., Tapasztó, L., Samuely, P., Szabó, P., Osváth, Z. 2017. Novel graphene/Sn and graphene/SnOx hybrid nanostructures: Induced superconductivity and band gaps revealed by scanning probe measurements. Carbon, 124 611-617.
  • [17] Lim, S. S., Baek, I. H., Kim, K. C., Baek, S. H., Park, H. H., Kim, J. S., Kim, S. K. 2019. Atomic layer deposition of SnO2 thin films using tetraethyltin and H2O2, Ceramics International, 45, 20600-20605.
  • [18] T. ÖZTÜRK, Mezo-gözenekli SnO2 Nanokom-pozitlerin Fotokatalitik Aktivitelerinin İncelenmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25 (2021) 466-472.
  • [19] Yadav, A. K., Malik, H., Chandel, S. 2014. Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renewable and Sustainable Energy Reviews, 31, 509-519.
  • [20] Bhattacharjee, A., Ahmaruzzaman, M., Sinha, T. 2015. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 751-760.
  • [21] Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S., Hamilton, J. W., Byrne, J. A., O'shea, K. 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125 331-349.
  • [22] Dursun, S., Kaya, I. C., Kalem, V., Akyildiz, H. 2018. UV/visible light active CuCrO2 nanoparticle– SnO2 nanofiber p–n heterostructured photocatalysts for photocatalytic applications. Dalton Transactions, 47, 14662-14678.
  • [23] Xiong, D., Chang, H., Zhang, Q., Tian, S., Liu, B., Zhao, X. 2015. Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 347, 747-754.
  • [24] Ahmad, T., Phul, R., Alam, P., Lone, I. H., Shahazad, M., Ahmed, J., Ahamad, T., Alshehri, S. M. 2017. Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles. RSC advances, 7, 27549-27557.
  • [25] Dong, F., Wang, Z., Li, Y., Ho, W. K., Lee, S. 2014. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environmental science& technology, 48, 10345-10353.
  • [26] Santra, S., Das, N., Chattopadhyay, K. 2013. Wide band gap p-type nanocrystalline CuBO2 as a novel UV photocatalyst. Materials Research Bulletin, 48 2669-2677.
  • [27] Yu, M., Draskovic, T. I., Wu, Y. 2014. Cu (I)-based dela-fossite compounds as photocathodes in p-type dye-sensitized solar cells, Physical Chemistry Chemical Physics, 16, 5026-5033.
  • [28] Thirumalairajan, S., V., Mastelaro, R., Escanhoela Jr, C. A. 2014. In-depth understanding of the relation between CuAlO2 particle size and morphology for ozone gas sensor detection at a nanoscale level, ACS applied materials& interfaces, 6, 21739-21749.
  • [29] Bouakaz, H., Abbas, M., Brahimi, R., Trari, M. 2021. Physical properties of the delafossite CuCoO2 synthesized by co-precipitation/hydrothermal route. Materials Science in Semiconductor Processing, 136 106132.
  • [30] Kurita, K., Yagisawa, M., Okazaki, R. 2021. Electrical resistivity and thermopower of hole-doped delafossite CuCoO2 polycrystals. Japanese Journal of Applied Physics, 60, 013001.
  • [31] Isacfranklin, M., Yuvakkumar, R., Ravi, G., Panni-para, M., Al-Sehemi, A. G. 2021. CuCoO2 electrodes for supercapacitor applications. Materials Letters, 296, 129930.
  • [32] Zhong, X., He, H., Du, J., Ren, Q., Huang, J., Tang, Y., Wang, J., Yang, L., Dong, F., Bian, L. 2019. Boosting solar water oxidation activity and stability of BiVO4 photoanode through the Co-catalytic effect of CuCoO2. Electrochimica Acta, 304, 301-311.
  • [33] Dursun, S., Akyildiz, H., Kalem, V. 2021. PMN-PT nanoparticle/SnO2 nanofiber heterostructures: Enhanced photocatalytic degradation performance by ultrasonic wave induced piezoelectric field. Journal of Alloys and Compounds, 889, 161769.
  • [34] Dursun, S., Kaya, İ. C., Kocabaş, M., Akyildiz, H., Kalem, V. 2020. Visible light active heterostructured photocatalyst system based on CuO plate‐like particles and SnO2 nanofibers. International Journal of Applied Ceramic Technology, 17, 1479-1489.
  • [35] Du, Z., Xiong, D., Verma, S. K., Liu, B., Zhao, X., Liu, L., Li, H. 2018. A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorganic Chemistry Frontiers, 5, 183-188.
  • [36] Poienar, M., Sfirloaga, P., Martin, C., Ursu, D., Vlazan, P. 2018. Hydrothermal synthesis of crednerite CuMn1−xMxO2 (M=Mg, Al; x= 0–0.08): structural characterisation and magnetic properties. Journal of Materials Science, 53, 2389-2395.
  • [37] Du, Z., Xiong, D., Qian, J., Zhang, T. Bai, J. Fang, D., Li, H. 2019. Investigation of the structural, optical and electrical properties of Ca2+ doped CuCoO2 nanosheets. Dalton Transactions, 48, 13753-13759.
  • [38] Tauc, J., Grigorovici, R., Vancu, A. 1966. Optical properties and electronic structure of amorphous germanium, physica status solidi (b), 15, 627-637.
  • [39] Chu, W., Choy, W., So, T. 2007. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. Journal of hazardous materials, 141, 86-91.
  • [40] Shi, F. 2012. Ceramic Coatings: Applications in Engineering. BoD–Books on Demand, 12p.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Sami Dursun 0000-0002-4581-4900

Project Number 202219056
Publication Date August 20, 2022
Published in Issue Year 2022 Volume: 26 Issue: 2

Cite

APA Dursun, S. (2022). CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 321-328. https://doi.org/10.19113/sdufenbed.1066542
AMA Dursun S. CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması. SDÜ Fen Bil Enst Der. August 2022;26(2):321-328. doi:10.19113/sdufenbed.1066542
Chicago Dursun, Sami. “CuCoO2 Parçacıkları Ile Yeni Metal Oksit Kompozitlerin Üretimi Ve Kirleticilerin Uzaklaştırılmasında Kullanılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 2 (August 2022): 321-28. https://doi.org/10.19113/sdufenbed.1066542.
EndNote Dursun S (August 1, 2022) CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 321–328.
IEEE S. Dursun, “CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması”, SDÜ Fen Bil Enst Der, vol. 26, no. 2, pp. 321–328, 2022, doi: 10.19113/sdufenbed.1066542.
ISNAD Dursun, Sami. “CuCoO2 Parçacıkları Ile Yeni Metal Oksit Kompozitlerin Üretimi Ve Kirleticilerin Uzaklaştırılmasında Kullanılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (August 2022), 321-328. https://doi.org/10.19113/sdufenbed.1066542.
JAMA Dursun S. CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması. SDÜ Fen Bil Enst Der. 2022;26:321–328.
MLA Dursun, Sami. “CuCoO2 Parçacıkları Ile Yeni Metal Oksit Kompozitlerin Üretimi Ve Kirleticilerin Uzaklaştırılmasında Kullanılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 2, 2022, pp. 321-8, doi:10.19113/sdufenbed.1066542.
Vancouver Dursun S. CuCoO2 Parçacıkları ile Yeni Metal Oksit Kompozitlerin Üretimi ve Kirleticilerin Uzaklaştırılmasında Kullanılması. SDÜ Fen Bil Enst Der. 2022;26(2):321-8.

e-ISSN: 1308-6529