Research Article
BibTex RIS Cite

Multi-kriterli karar verme problemleri içindeki Q- katsayılı ortopair olasılıksal karmaşık Bulanık Ağırlaştırılmış Hibrid operatörler

Year 2023, Volume: 27 Issue: 3, 366 - 373, 25.12.2023
https://doi.org/10.19113/sdufenbed.1196523

Abstract

Karar verme problemlerinin uygulamalarında karmaşık bilgilerin artması ile olasılıklı tereddütlü bulanık küme yapısının kullanımı genişlemiştir. Bu nedenle, bu makale, q>0 için q-katsayılı ortopair olasılıksal kararsız bulanık hibrit ağırlıklı aritmetik ve geometrik (q-ROPHHWAG) operatörü ve q-katsayılı ortopair olasılıklı tereddütlü bulanık hibrit sıralı ağırlıklı aritmetik ve geometrik (q-ROPHHOWAG) operatörü olmak üzere iki yeni operatör sunmayı amaçlamaktadır. Sunulan operatörler, yeni bir parametre eklenmesi, daha esnek bir yapıya sahip olması ve kendi içinde karşılaştırmalı analizler sunması bakımından birçok açıdan mevcut operatörlerden daha iyidir. Ayrıca önerilen operatörlerin bazı özelliklerinden de bahsettik. Ek olarak, sunulan yöntem ve operatörlerin etkili, gerçek ve esnek olduğunu belirtmek için bir algoritma ve örnek veriyoruz. Daha sonra operatörlerimizle Pisagor olasılıklı tereddütlü bulanık kümeler üzerinden bir örnek çözüyoruz ve sonuçlar diğer operatörlere göre uyumlu ve daha büyük bir etkiye sahiptir.

References

  • [1] Xu Z.S., Zhou W. 1986. Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optim. Decis. Mak. 16(4), 481-503, 2017.Atanassov, K. T., Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87-96.
  • [2] Zhang, S., Xu ZS, He, Y. 2017. Operations and integrations of probabilistic hesitant fuzzy information in decision making” Inf Fusion 38, 1-11.
  • [3] Zhai ,Y., Xu, Z., Liao, H. 2017. Measures of probabilistic interval-valued intuitionistic hesitant fuzzy sets and the application in reducing excessive medical examinations. IEEE Transactions on Fuzzy Systems, 26(3), 1651-1670.
  • [4] Batool,, B., Abdullah, S., Ashraf, S., Ahmad, M. 2021. Pythagorean probabilistic hesitant fuzzy aggregation operators and their application in decision-making. Kybernetes 6, 688-694.
  • [5] Batool, B., Abosuliman, SS, Abdullah, S., Ashraf, S. 2021. EDAS method for decision support modeling under the Pythagorean probabilistic hesitant fuzzy aggregation information. Journal of Ambient Intelligence and Humanized Computing, 16(5) 1-14.
  • [6] Ren, Y., Yuan, X., Zhao, X., Yu, B. 2021. Calculation and aggregation of Q-rung orthopair probabilistic hesitant fuzzy information. IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 5, 2146-2150.
  • [7] Ren ,Y., Yuan, X., Lin, R. 2021. A novel MADM algorithm for landfill site selection based on q-rung orthopair probabilistic hesitant fuzzy power Muirhead mean operatör. Plos one, 16(10), 258-275.
  • [8] Ashraf, S., Kousar, M., Hameed, M. S. 2023. Early infectious diseases identification based on complex probabilistic hesitant fuzzy N-soft information. Soft Computing, 1-26.
  • [9] Attaullah, Ashraf, S., Rehman, N., & Khan, A. 2023. q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information and Their Application in Decision Making. International Journal of Fuzzy Systems, 25(5), 2067-2080.
  • [10] Wan, B., Zhang, J., Garg, H., & Huang, W. (2023). Q-rung orthopair hesitant fuzzy preference relations and its group decision-making application. Complex & Intelligent Systems, 1-22.
  • [11] Qahtan, S., Alsattar, H. A., Zaidan, A. A., Deveci, M., Pamucar, D., Delen, D., & Pedrycz, W. 2023. Evaluation of agriculture-food 4.0 supply chain approaches using Fermatean probabilistic hesitant-fuzzy sets based decision making model. Applied Soft Computing, 138, 110170.
  • [12] Liao, N., Wei, G., & Chen, X. 2022. TODIM method based on cumulative prospect theory for multiple attributes group decision making under probabilistic hesitant fuzzy setting. International Journal of Fuzzy Systems, 1-18.

Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems

Year 2023, Volume: 27 Issue: 3, 366 - 373, 25.12.2023
https://doi.org/10.19113/sdufenbed.1196523

Abstract

With the increase of complex information in applications of decision making problems, the use of probabilistic hesitant fuzzy set structure has expanded. Therefore, this paper aims to present two new operators namely q-rung orthopair probabilistic hesitant fuzzy hybrid weighted arithmetic and geometric (q-ROPHHWAG) operator and q-rung orthopair probabilistic hesitant fuzzy hybrid ordered weighted arithmetic and geometric (q-ROPHHOWAG) operator for q>0. The presented operators are better than existing operators in many respects as adding a new parameter, having more flexible structure and presenting comparative analysis in its own. Moreover, we mention from some properties of the proposed operators. In addition to, we give an algorithm and example to indicate effective, reality and flexible of presented method and operators. Then, we solve an example over Pythagorean probabilistic hesitant fuzzy sets with our operators and the results are agreement and the offered operators have superior effect than other operators.

References

  • [1] Xu Z.S., Zhou W. 1986. Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optim. Decis. Mak. 16(4), 481-503, 2017.Atanassov, K. T., Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87-96.
  • [2] Zhang, S., Xu ZS, He, Y. 2017. Operations and integrations of probabilistic hesitant fuzzy information in decision making” Inf Fusion 38, 1-11.
  • [3] Zhai ,Y., Xu, Z., Liao, H. 2017. Measures of probabilistic interval-valued intuitionistic hesitant fuzzy sets and the application in reducing excessive medical examinations. IEEE Transactions on Fuzzy Systems, 26(3), 1651-1670.
  • [4] Batool,, B., Abdullah, S., Ashraf, S., Ahmad, M. 2021. Pythagorean probabilistic hesitant fuzzy aggregation operators and their application in decision-making. Kybernetes 6, 688-694.
  • [5] Batool, B., Abosuliman, SS, Abdullah, S., Ashraf, S. 2021. EDAS method for decision support modeling under the Pythagorean probabilistic hesitant fuzzy aggregation information. Journal of Ambient Intelligence and Humanized Computing, 16(5) 1-14.
  • [6] Ren, Y., Yuan, X., Zhao, X., Yu, B. 2021. Calculation and aggregation of Q-rung orthopair probabilistic hesitant fuzzy information. IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 5, 2146-2150.
  • [7] Ren ,Y., Yuan, X., Lin, R. 2021. A novel MADM algorithm for landfill site selection based on q-rung orthopair probabilistic hesitant fuzzy power Muirhead mean operatör. Plos one, 16(10), 258-275.
  • [8] Ashraf, S., Kousar, M., Hameed, M. S. 2023. Early infectious diseases identification based on complex probabilistic hesitant fuzzy N-soft information. Soft Computing, 1-26.
  • [9] Attaullah, Ashraf, S., Rehman, N., & Khan, A. 2023. q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information and Their Application in Decision Making. International Journal of Fuzzy Systems, 25(5), 2067-2080.
  • [10] Wan, B., Zhang, J., Garg, H., & Huang, W. (2023). Q-rung orthopair hesitant fuzzy preference relations and its group decision-making application. Complex & Intelligent Systems, 1-22.
  • [11] Qahtan, S., Alsattar, H. A., Zaidan, A. A., Deveci, M., Pamucar, D., Delen, D., & Pedrycz, W. 2023. Evaluation of agriculture-food 4.0 supply chain approaches using Fermatean probabilistic hesitant-fuzzy sets based decision making model. Applied Soft Computing, 138, 110170.
  • [12] Liao, N., Wei, G., & Chen, X. 2022. TODIM method based on cumulative prospect theory for multiple attributes group decision making under probabilistic hesitant fuzzy setting. International Journal of Fuzzy Systems, 1-18.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Şerif Özlü 0000-0003-4280-2258

Publication Date December 25, 2023
Published in Issue Year 2023 Volume: 27 Issue: 3

Cite

APA Özlü, Ş. (2023). Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 366-373. https://doi.org/10.19113/sdufenbed.1196523
AMA Özlü Ş. Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems. J. Nat. Appl. Sci. December 2023;27(3):366-373. doi:10.19113/sdufenbed.1196523
Chicago Özlü, Şerif. “Q- Rung Orthopair Probabilistic Hesitant Fuzzy Hybrid Aggregating Operators in Multi-Criteria Decision Making Problems”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 3 (December 2023): 366-73. https://doi.org/10.19113/sdufenbed.1196523.
EndNote Özlü Ş (December 1, 2023) Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 3 366–373.
IEEE Ş. Özlü, “Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems”, J. Nat. Appl. Sci., vol. 27, no. 3, pp. 366–373, 2023, doi: 10.19113/sdufenbed.1196523.
ISNAD Özlü, Şerif. “Q- Rung Orthopair Probabilistic Hesitant Fuzzy Hybrid Aggregating Operators in Multi-Criteria Decision Making Problems”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/3 (December 2023), 366-373. https://doi.org/10.19113/sdufenbed.1196523.
JAMA Özlü Ş. Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems. J. Nat. Appl. Sci. 2023;27:366–373.
MLA Özlü, Şerif. “Q- Rung Orthopair Probabilistic Hesitant Fuzzy Hybrid Aggregating Operators in Multi-Criteria Decision Making Problems”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 3, 2023, pp. 366-73, doi:10.19113/sdufenbed.1196523.
Vancouver Özlü Ş. Q- rung orthopair probabilistic hesitant fuzzy hybrid aggregating operators in multi-criteria decision making problems. J. Nat. Appl. Sci. 2023;27(3):366-73.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.