Research Article
BibTex RIS Cite

Analysis of The Effect of Chronic Stimulation of Carotid Sinus Baroreceptor on Arterial Pressure by Using a Mathematical Model

Year 2024, Volume: 28 Issue: 3, 440 - 459, 23.12.2024
https://doi.org/10.19113/sdufenbed.1511996

Abstract

When arterial blood pressure increases or decreases baroreceptors that have placed arterial walls strecth and send signals to the central nervous system will increase or decrease arterial pressure. There are experimental studies that reduced the blood pressure by chronic stimulation of carotid sinus baroreceptors but the mechanisms by which this makes happen are not fully defined. In this study, a long-term cardiovascular system mathematical model has been used to examine the effect of chronic stimulation of carotid sinus baroreceptors on arterial pressure and urinary sodium flow. According to the model , the reason for the decrease in sodium excretion from the kidney in the stimulation of carotid sinus baroreceptors is declining in the glomerular filtration rate. In other words, when the total peripheral resistance decreases, the effect of decreased total peripheral resistance on reducing to glomerular filtration rate is more than the effect of decreased renal sympathetic nerve activity on raising to glomerular filtration rate.

References

  • [1] Yeğen, Ç. B., Alican, İ., Solakoğlu, Z., ed. 2017. Guyton ve Hall Tıbbi Fizyoloji Kitabı. Güneş Tıp Kitabevleri.
  • [2] Barrett, K. E., Barman, S. M., Brooks, H. L., Yuan, X.J. 2019. Ganong’s Review of Medical Physiology, McGraw-Hill Education.
  • [3] Guyton, A. C. 1980. Arterial Pressure and Hypertansion. Philadelphia: Saunders.
  • [4] Guyton, A. C., Coleman, T. G., Granger, H. J. 1972. Circulation: overall regulation. Annu Rev Physiol, 34: 13–46.
  • [5] Uttamsingh, R. J., Leaning M. S., Bushman J. A., Carson E. R. Finkelstein L. 1985. Mathematical model of the human renal system. Med Biol Eng Comput, 23: 525–535
  • [6] Coleman, T. G., Hall, J.E. 1992. A mathematical model of renal hemodynamics and excretory function. In: Structuring Biological Systems: A Computer Modelling Approach. edited by Iyengar SS. Boca Raton, FL: CRC,s. 89 –124.
  • [7] Karaaslan, F., Denizhan, Y., Kayserilioğlu, A., H. Gulcur, H. Ö. 2005. Long-Term Mathematical Model Involving Renal Sympathetic Nerve Activity, Arterial Pressure, and Sodium Excretion. Annals of Biomedical Annals of Biomedical Engineering, 33(11):1607-30.
  • [8] Karaaslan, F., Denizhan, Y., Hester, R. 2014. A mathematical model of long-term renal sympathetic nerve activity inhibition during an increase in sodium intake. Am J Physiol Regul Integr Comp Physiol, 306: R234 –R247.
  • [9] DiBona, G. F. 1985. Neural Control of Renal Function: Role of Renal Alpha Adrenoreceptors. Journal of Cardiovascular Pharmacology, 7 (Suppl ,8): S13-S23.
  • [10] DiBona, G. F., Kopp, U. C. 1997. Neural Control of Renal Function. Physilogical Reviews, Vol.77, No 1, S132-197.
  • [11] DiBona, G. F. 2004. The sympathetic nervous system and hypertension: recent developments. Hypertension, 43:147–150.
  • [12] DiBona, G. F. 2005. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol, 289: R633–R641.
  • [13] He F. J., Markandu N. D., MacGregor G. A. 2001. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension, 38: 321–325.
  • [14] Aydın, M., Kuryel, B., Gündüz, Gönül., Oturanç, G. 2016. Diferansiyel Denklemler ve Uygulamaları. 12. Baskı, Barış Yayınları Fakülteler Kitabevi, İzmir, 472-478s.
  • [15] Iliescu, R., Lohmeier, T. E. 2010. Lowering of blood pressure during chronic suppression of central sympathetic outflow: Insight from computer simulations. Clin Exp Pharmacol Physiol, 37(2): e24-33.
  • [16] Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar D. J., Kieval R. S. 2004. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43: 306–11.
  • [17] Lohmeier, T. E., Dwyer, T. M., Hildebrandt, D. A., Irwin, E. D., Rossing, M. A., Sedar, D. J., Kieval, R. S. 2005. Influence of prolonged baroreflex activation on arterial pressure in angiotensin hypertension. Hypertension, 46: 1194 –1200.
  • [18] Lohmeier, T. E., Dwyer T. M., Irwin, E. D., Rossing, M. A., Kieval, R. S. 2007. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension, 49: 1307–1314.
  • [19] Lohmeier, T. E., Hildebrandt, D. A., Dwyer, T. M., Iliescu, R., Irwin, E. D., Cates, A. W., Rossing, M. A. 2009. Prolonged activation of the baroreflex decrease arterial pressure even during chronic adrenergic blockade. Hypertension, 53: 833–838.
  • [20] Clemmer, J. S., Pruett, W. A., Hester, L. R., Iliescu, R., Lohmeier, T. E. 2018. Role of the heart in blood pressure lowering during chronic baroreflex activation: insight from an in silico analysis. Am J Physiol Heart Circ Physiol, 315(5):H1368-H1382.
  • [21] Lohmeier, T. E., Iliescu, R., Dwyer, T. M., Irwin E. D., Cates, A. W., Rossing, M. A. 2010. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol, 299: H402–H409.
  • [22] Lohmeier, T. E., Iliescu, R. 2012. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation. J Appl Physiol, 113(10):1652-8.
  • [23] Lohmeier, T. E., Iliescu, R. 2013. Chronic activation of the baroreflex and the promise for hypertension therapy. Handb Clin Neurol, 2013:117:395-406.
  • [24] Lohmeier, T. E., Iliescu, R., Tudorancea, I., Cazan, R., Cates, A. W., Georgakopoulos, D., Irwin, E. D. 2016. Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension. Hypertension, 68(1):227-35.
  • [25] Neylon, M., Marshall, J.M., Johns, E. J. 1995. The effects of systemic hypoxia on renal function in the anaesthetized rat. Journal of Physiology, 487.2,497-511.
  • [26] Morita, H., Vatner, S. F. 1985. Effects of volume expansion on renal nerve activity, renal blood flow, and sodium and water excretion in conscious dogs. Am J Physiol, 249(5 Pt 2): F680-7.
  • [27] Takeuchi, J., Ohya, N., Sakai, S., Nakamura, H., Nohara, T. 1968. Nervous control of renal tubular function. Jpn Heart J, 9(6):564-72.
  • [28] Miki, K., Hayashida, Y., Shiraki, K. 1993. Cardiac-renal-neural reflex plays a major role in natriuresis induced by left atrial distension. Am J Physiol, 264(2 Pt 2): R369-75.
  • [29] Prosnitz, H. Z., DiBona, G. F. 1978. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol, 235(6): F557-63.
  • [30] Miki, K., Hayashida, Y., Shiraki, K. 2002. Role of cardiac-renal neural reflex in regulating sodium excretion during water immersion in conscious dogs. J Physiol, 545(1):305-12.
  • [31] Beers, E. T., Carroll, R. G., Young, D. B., Guyton, A. C. 1986. Effects of graded changes in reflex renal nerve activity on renal function. Am J Physiol, 250(3 Pt 2): F559-65.
  • [32] Handa, R. K., Johns, E. J. 1987. The role of angiotensin II in the renal responses to somatic nerve stimulation in the rat. J Physiol, 393:425-36.
  • [33] Nelson, L. D., Osborn, J. L. 1993. Neurogenic control of renal function in response to graded nonhypotensive hemorrhage in conscious dogs. Am J Physiol, 264(4 Pt 2): R661-7.
  • [34] Miki, K., Hayashida, Y., Tajima, F., Iwamoto J., Shiraki, K. 1989. Renal sympathetic nerve activity and renal responses during head-up tilt in conscious dogs. Am J Physiol, 257(2 Pt 2): R337-43.
  • [35] Iliescu, R., Irwin, E. D., Georgakopoulos, D., Lohmeier, T. E. 2012. Renal Responses to Chronic Suppression of Central Sympathetic Outflow. Hypertension,60:749-756.
  • [36] Caymaz, S., Karaaslan, F. 2023. Kan Sodyum Konsantrasyonunun Kontrolünde ADH, Renin-Anjiyotensin-Aldosteron Etkisinin Analizi. 24. Otomatik Kontrol Ulusal Toplantısı,14-16 Eylül, İstanbul.
  • [37] Caymaz, S., Karaaslan F. 2023. Kronik Böbrek Sempatik Sinir Aktivitesi İnhibisyonunun Kan Basıncına Etkisi. Tıp Teknolojileri Kongresi,10-12 Kasım, Gazimağusa,134-137.
  • [38] Lohmeier, T. E., Hall, J. E. 2019. Device-Based Neuromodulation for Resistant Hypertension Therapy. Circulation Research, 124(7):1071-1093.

Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi

Year 2024, Volume: 28 Issue: 3, 440 - 459, 23.12.2024
https://doi.org/10.19113/sdufenbed.1511996

Abstract

İnsan vücudunda arteriyel kan basıncı arttığında ya da azaldığında arter duvarlarında yerleşmiş halde bulunan baroreseptörler gerilerek merkezi sinir sistemine arter basıncını düşürecek ya da yükseltecek sinyaller gönderirler. Karotis sinüs baroreseptörlerinin elektriksel olarak uyarılmasıyla kan basıncının azaldığı deneysel çalışmalar mevcuttur ancak bunun gerçekleşmesini sağlayan mekanizmalar tam olarak tanımlanmamıştır. Bu çalışmada karotis sinüs baroreseptörlerinin kronik uyarılmasının arter basıncı ve idrar sodyum debisi üzerine etkisi uzun dönemli dolaşım sistemi matematik modeli kullanılarak analiz edilmiştir. Modele göre karotis baroreseptörlerinin kronik uyarılmasında böbrekten sodyum atılımının azalmasının sebebi glomerüler filtrasyon hızının azalmasıdır. Diğer bir deyişle, arter damar direnci azaldığında, azalan arter kan basıncının glomerüler filtrasyon hızını azaltıcı etkisi, azalmış böbrek sempatik sinir aktivitesinin glomerüler filtrasyon hızını artırıcı etkisinden fazladır.

References

  • [1] Yeğen, Ç. B., Alican, İ., Solakoğlu, Z., ed. 2017. Guyton ve Hall Tıbbi Fizyoloji Kitabı. Güneş Tıp Kitabevleri.
  • [2] Barrett, K. E., Barman, S. M., Brooks, H. L., Yuan, X.J. 2019. Ganong’s Review of Medical Physiology, McGraw-Hill Education.
  • [3] Guyton, A. C. 1980. Arterial Pressure and Hypertansion. Philadelphia: Saunders.
  • [4] Guyton, A. C., Coleman, T. G., Granger, H. J. 1972. Circulation: overall regulation. Annu Rev Physiol, 34: 13–46.
  • [5] Uttamsingh, R. J., Leaning M. S., Bushman J. A., Carson E. R. Finkelstein L. 1985. Mathematical model of the human renal system. Med Biol Eng Comput, 23: 525–535
  • [6] Coleman, T. G., Hall, J.E. 1992. A mathematical model of renal hemodynamics and excretory function. In: Structuring Biological Systems: A Computer Modelling Approach. edited by Iyengar SS. Boca Raton, FL: CRC,s. 89 –124.
  • [7] Karaaslan, F., Denizhan, Y., Kayserilioğlu, A., H. Gulcur, H. Ö. 2005. Long-Term Mathematical Model Involving Renal Sympathetic Nerve Activity, Arterial Pressure, and Sodium Excretion. Annals of Biomedical Annals of Biomedical Engineering, 33(11):1607-30.
  • [8] Karaaslan, F., Denizhan, Y., Hester, R. 2014. A mathematical model of long-term renal sympathetic nerve activity inhibition during an increase in sodium intake. Am J Physiol Regul Integr Comp Physiol, 306: R234 –R247.
  • [9] DiBona, G. F. 1985. Neural Control of Renal Function: Role of Renal Alpha Adrenoreceptors. Journal of Cardiovascular Pharmacology, 7 (Suppl ,8): S13-S23.
  • [10] DiBona, G. F., Kopp, U. C. 1997. Neural Control of Renal Function. Physilogical Reviews, Vol.77, No 1, S132-197.
  • [11] DiBona, G. F. 2004. The sympathetic nervous system and hypertension: recent developments. Hypertension, 43:147–150.
  • [12] DiBona, G. F. 2005. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol, 289: R633–R641.
  • [13] He F. J., Markandu N. D., MacGregor G. A. 2001. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension, 38: 321–325.
  • [14] Aydın, M., Kuryel, B., Gündüz, Gönül., Oturanç, G. 2016. Diferansiyel Denklemler ve Uygulamaları. 12. Baskı, Barış Yayınları Fakülteler Kitabevi, İzmir, 472-478s.
  • [15] Iliescu, R., Lohmeier, T. E. 2010. Lowering of blood pressure during chronic suppression of central sympathetic outflow: Insight from computer simulations. Clin Exp Pharmacol Physiol, 37(2): e24-33.
  • [16] Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar D. J., Kieval R. S. 2004. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43: 306–11.
  • [17] Lohmeier, T. E., Dwyer, T. M., Hildebrandt, D. A., Irwin, E. D., Rossing, M. A., Sedar, D. J., Kieval, R. S. 2005. Influence of prolonged baroreflex activation on arterial pressure in angiotensin hypertension. Hypertension, 46: 1194 –1200.
  • [18] Lohmeier, T. E., Dwyer T. M., Irwin, E. D., Rossing, M. A., Kieval, R. S. 2007. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension, 49: 1307–1314.
  • [19] Lohmeier, T. E., Hildebrandt, D. A., Dwyer, T. M., Iliescu, R., Irwin, E. D., Cates, A. W., Rossing, M. A. 2009. Prolonged activation of the baroreflex decrease arterial pressure even during chronic adrenergic blockade. Hypertension, 53: 833–838.
  • [20] Clemmer, J. S., Pruett, W. A., Hester, L. R., Iliescu, R., Lohmeier, T. E. 2018. Role of the heart in blood pressure lowering during chronic baroreflex activation: insight from an in silico analysis. Am J Physiol Heart Circ Physiol, 315(5):H1368-H1382.
  • [21] Lohmeier, T. E., Iliescu, R., Dwyer, T. M., Irwin E. D., Cates, A. W., Rossing, M. A. 2010. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol, 299: H402–H409.
  • [22] Lohmeier, T. E., Iliescu, R. 2012. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation. J Appl Physiol, 113(10):1652-8.
  • [23] Lohmeier, T. E., Iliescu, R. 2013. Chronic activation of the baroreflex and the promise for hypertension therapy. Handb Clin Neurol, 2013:117:395-406.
  • [24] Lohmeier, T. E., Iliescu, R., Tudorancea, I., Cazan, R., Cates, A. W., Georgakopoulos, D., Irwin, E. D. 2016. Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension. Hypertension, 68(1):227-35.
  • [25] Neylon, M., Marshall, J.M., Johns, E. J. 1995. The effects of systemic hypoxia on renal function in the anaesthetized rat. Journal of Physiology, 487.2,497-511.
  • [26] Morita, H., Vatner, S. F. 1985. Effects of volume expansion on renal nerve activity, renal blood flow, and sodium and water excretion in conscious dogs. Am J Physiol, 249(5 Pt 2): F680-7.
  • [27] Takeuchi, J., Ohya, N., Sakai, S., Nakamura, H., Nohara, T. 1968. Nervous control of renal tubular function. Jpn Heart J, 9(6):564-72.
  • [28] Miki, K., Hayashida, Y., Shiraki, K. 1993. Cardiac-renal-neural reflex plays a major role in natriuresis induced by left atrial distension. Am J Physiol, 264(2 Pt 2): R369-75.
  • [29] Prosnitz, H. Z., DiBona, G. F. 1978. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol, 235(6): F557-63.
  • [30] Miki, K., Hayashida, Y., Shiraki, K. 2002. Role of cardiac-renal neural reflex in regulating sodium excretion during water immersion in conscious dogs. J Physiol, 545(1):305-12.
  • [31] Beers, E. T., Carroll, R. G., Young, D. B., Guyton, A. C. 1986. Effects of graded changes in reflex renal nerve activity on renal function. Am J Physiol, 250(3 Pt 2): F559-65.
  • [32] Handa, R. K., Johns, E. J. 1987. The role of angiotensin II in the renal responses to somatic nerve stimulation in the rat. J Physiol, 393:425-36.
  • [33] Nelson, L. D., Osborn, J. L. 1993. Neurogenic control of renal function in response to graded nonhypotensive hemorrhage in conscious dogs. Am J Physiol, 264(4 Pt 2): R661-7.
  • [34] Miki, K., Hayashida, Y., Tajima, F., Iwamoto J., Shiraki, K. 1989. Renal sympathetic nerve activity and renal responses during head-up tilt in conscious dogs. Am J Physiol, 257(2 Pt 2): R337-43.
  • [35] Iliescu, R., Irwin, E. D., Georgakopoulos, D., Lohmeier, T. E. 2012. Renal Responses to Chronic Suppression of Central Sympathetic Outflow. Hypertension,60:749-756.
  • [36] Caymaz, S., Karaaslan, F. 2023. Kan Sodyum Konsantrasyonunun Kontrolünde ADH, Renin-Anjiyotensin-Aldosteron Etkisinin Analizi. 24. Otomatik Kontrol Ulusal Toplantısı,14-16 Eylül, İstanbul.
  • [37] Caymaz, S., Karaaslan F. 2023. Kronik Böbrek Sempatik Sinir Aktivitesi İnhibisyonunun Kan Basıncına Etkisi. Tıp Teknolojileri Kongresi,10-12 Kasım, Gazimağusa,134-137.
  • [38] Lohmeier, T. E., Hall, J. E. 2019. Device-Based Neuromodulation for Resistant Hypertension Therapy. Circulation Research, 124(7):1071-1093.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Computational Physiology
Journal Section Articles
Authors

Sibel Caymaz 0009-0001-1447-9441

Fatih Karaaslan 0000-0002-6183-9235

Publication Date December 23, 2024
Submission Date July 7, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2024 Volume: 28 Issue: 3

Cite

APA Caymaz, S., & Karaaslan, F. (2024). Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 440-459. https://doi.org/10.19113/sdufenbed.1511996
AMA Caymaz S, Karaaslan F. Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi. J. Nat. Appl. Sci. December 2024;28(3):440-459. doi:10.19113/sdufenbed.1511996
Chicago Caymaz, Sibel, and Fatih Karaaslan. “Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 3 (December 2024): 440-59. https://doi.org/10.19113/sdufenbed.1511996.
EndNote Caymaz S, Karaaslan F (December 1, 2024) Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 3 440–459.
IEEE S. Caymaz and F. Karaaslan, “Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi”, J. Nat. Appl. Sci., vol. 28, no. 3, pp. 440–459, 2024, doi: 10.19113/sdufenbed.1511996.
ISNAD Caymaz, Sibel - Karaaslan, Fatih. “Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/3 (December 2024), 440-459. https://doi.org/10.19113/sdufenbed.1511996.
JAMA Caymaz S, Karaaslan F. Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi. J. Nat. Appl. Sci. 2024;28:440–459.
MLA Caymaz, Sibel and Fatih Karaaslan. “Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 3, 2024, pp. 440-59, doi:10.19113/sdufenbed.1511996.
Vancouver Caymaz S, Karaaslan F. Karotis Sinüs Baroreseptörlerinin Kronik Uyarılmasının Arter Basıncı Üzerine Etkisinin Matematik Model Kullanılarak Analizi. J. Nat. Appl. Sci. 2024;28(3):440-59.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.