Research Article
BibTex RIS Cite

Kömür Maden Sahalarının Atık ve Maden Stok Alanlarında Asit Maden Drenajının Karakterizasyonu: Kinetik Test Nem Hücresi Yöntemi

Year 2024, Volume: 9 Issue: 1, 96 - 113, 29.06.2024
https://doi.org/10.33484/sinopfbd.1379682

Abstract

Madencilik faaliyetlerinin ekonomik girdilerinin değerlendirilmesinin yanı sıra bu faaliyetler sonucunda ortaya çıkabilecek çevresel kaygıların da incelenmesi önemlidir. Gelecek nesiller üzerinde olumsuz çevresel etkilerin önlenmesi için madencilik tesislerinin işletilmesine ilişkin yasal düzenlemelerin madencilik faaliyetleri ve çevresel etkilerle bütünleşik bir şekilde uygulanması gerekmektedir. Madenciliğe özgü en önemli çevre sorunları, maden atıklarının karakterizasyonunun yeterince incelenmemesi ve bu atıkların yıllar içinde çevreye verebileceği kirliliğin tam olarak tespit edilememesidir. Özellikle kükürt mineralleri açısından zengin olan kömür madenlerinin açılması, işletilmesi ve kapatılması sırasında atmosferik işlemlere maruz kalan bu minerallerin reaksiyonları sonucu ortaya çıkan Asit Maden Drenajı (AMD) oluşumu doğal yaşamı tehdit etmektedir. Cevher ve atığın AMD oluşum potansiyelini tahmin etmek amacıyla sahanın mineralojik ve kimyasal bileşimini belirlemek amacıyla statik ve kinetik testler uygulanmaktadır. Bu testler arasında doğa koşullarını temsil etmesi açısından en uygun test kinetik test yöntemidir. Çalışma kapsamında ASTM D5744-18 standardına göre hazırlanan kolonlarda saha koşulları simüle edilmiş, ortaya çıkan sızıntı suyunun fiziksel ve kimyasal analizleri yapılarak sonuçlar değerlendirilmiştir. Elde edilen verilere göre 20 Haftalık test süresinde asit oluşumu gözlemlenmemiş, metal salınımları ise düşük oranda karakterize edilmiştir. Örnekleme yapılan bölgenin jeolojisinde bulunan kil yapılarının sızıntı oranında etkili olduğu tespit edilmiştir.

References

  • Saglam, E. S., & Akçay, M. (2016). Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Environmental Science and Pollution Research, 23, 6584–6607. https://doi.org/10.1007/s11356-015-5835-2
  • Paktunc, A. D., & Davé, N. K. (2002). Formation of secondary pyrite and carbonate minerals in the Lower Williams Lake tailings basin, Elliot Lake, Ontario, Canada. American Mineralogist, 87(5-6), 593-602. https://doi.org/10.2138/am-2002-5-601
  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals In El-Din, H., Saleh, M., Aglan, R. F. (Eds), Heavy Metals, IntechOpen. https://books.google.com.tr/books?hl=tr&lr=&id=dnuQDwAAQBAJ&oi=fnd&pg=PA115&dq=Masindi,+Vhahangwele,+and+Khathutshelo+L.+Muedi+.+%22+Environmental+contamination+by+heavy+heavy+metals%E2%80%9D+(2018):+115-132.&ots=UYnqVocWjR&sig=VL9B56igQ7jObrbB2sYDAzXlKS8&redir_esc=y#v=onepage&q&f=false
  • Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 31(1), 108-120.
  • Masindi, V., & Tekere, M. (2020). Innovative routes for acid mine drainage (AMD) valorization: advocating for a circular economy. In Fosso-Kankeu, E., Wolkerdorfer, C., Burgess, J. (Eds), Recovery of Byproducts from Acid Mine Drainage Treatment, Wiley. (pp. 189-218). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119620204.ch7
  • Graham, S., Liu, X., Bartlett, B., Ng, C., Harris, K. R., Aitken, A., Barkel, A., Kavanaugh, C., & Talukdar, J. (2018). Reading for writing: A meta-analysis of the impact of reading interventions on writing. Review of Educational Research, 88(2), 243-284. https://doi.org/10.3102/0034654317746927
  • Zhao, M. M., Chen, Y. P., Xue, L. G., & Fan, T. T. (2020). Three kinds of ammonia oxidizing microorganisms play an important role in ammonia nitrogen self-purification in the Yellow River. Chemosphere, 243, 125405. https://doi.org/10.1016/j.chemosphere.2019.125405
  • Kefeni, K. K., Msagati, T. A., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475-493. https://doi.org/10.1016/j.jclepro.2017.03.082
  • Akinwekomi, V., Maree, J. P., Masindi, V., Zvinowanda, C., Osman, M. S., Foteinis, S., Mpenyana-Monyatsi L., & Chatzisymeon, E. (2020). Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum–Gearing towards a circular economy concept. Minerals Engineering, 148, 106204. https://doi.org/10.1016/j.mineng.2020.106204
  • Modis, K., & Komnitsas, K. (2007). Optimum sampling density for the prediction of acid mine drainage in an underground sulphide mine. Mine Water and the Environment, 26, 237-242. https://doi.org/10.1007/s10230-007-0014-4
  • Geidel, G., Caruccio, F. T., Hornberger, R., & Brady, K. (2000). Guidelines and recommendations for use of kinetic tests for coal mining (AMD) prediction in the eastern US Chapter 5. Prediction of Water Quality at Surface Coal Mines. National Mine Land Reclamation Center, West Virginia University, Morgantown, WV. https://wvwri.wvu.edu/files/d/f0ffc22a-db9b-417f-a895-c3e3dee97477/00-prediction-amd-handbook-kleinmann-2000.pdf
  • Li, J., Wang, W., He, X., Shao, F., &, Bai, Y. (2023). Release characteristics of harmful trace elements during dynamic leaching and static ımmersion of coal gangue in Xinjiang, ACS Omega, 9(1), 393-400. https://doi.org/10.1021/acsomega.3c05736
  • Nicholson, R. V. (1994). Iron-sulfide oxidation mechanisms: laboratory studies. Environmental Geochemistry of Sulphide Mine-Wastes, 22, 163-183.
  • Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785-1803.
  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3-16. https://doi.org/10.1016/j.apgeochem.2015.02.008
  • White, W. W., Lapakko, K. A., & Cox, R. L. (1997). Static-test methods most commonly used to predict acid-mine drainage: Practical guidelines for use and interpretation. In G.S. Plumlee, M.J. Logsdon, & L.F. Filipek (Eds.), The Environmental Geochemistry of Mineral Deposits: Part A: Processes, Techniques, and Health Issues Part B: Case Studies and Research Topics. Society of Economic Geologists, Inc. https://doi.org/10.5382/Rev.06.15
  • Nleya, Y., Simate, G. S., & Ndlovu, S. (2016). Sustainability assessment of the recovery and utilisation of acid from acid mine drainage. Journal of Cleaner Production, 113, 17-27. https://doi.org/10.1016/j.jclepro.2015.11.005
  • Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., & Hellier, W. (1998). Handbook of technologies for avoidance and remediation of acid mine drainage. National Mine Land Reclamation Center, Morgantown, 131. https://wvwri.wvu.edu/files/d/c2e42b2b-e40d-4ada-8bad-3c264d867e76/99-handbook-avoidance-remediation.pdf
  • Kuyucak, N. (2002). Acid mine drainage prevention and control options. CIM Bulletin, 96-102.
  • Okay, A. I., Siyako, M., & Bürkan, K. A. (1991). Geology and tectonic evolution of the Biga Peninsula, northwest Turkey. Bulletin of the Technical University of Istanbul, 44(1-2), 191-256.
  • Siyako, M., Bürkan, K. A., & Okay, A. I. (1989). Tertiary geology and hydrocarbon potential of the Biga and Gelibolu peninsulas. Turkish Association of Petroleum Geologists Bulletin, 1(3), 183-99.
  • Ercan, T., Satır, M., Steınıtz, G., Dora, A., Sarıfakıoğlu, E., Adls, C., Walter, H. J., Yıldırım, T. (1995). Features of the tertiary volcanizm observed at Biga Peninsula and Gökçeada, Tavşan Islands. Bulletin of the Mineral Research and Exploration, 117(117), 40-41.
  • Karaca, Ö., & Bozcu, M. (2019). Determination of tectonic and volcanic structures with the aid of lineaments: example from Çan-Etili (Canakkale) lignite basin. Türkiye Jeoloji Bülteni, 62(3), 247-262. https://doi.org/10.25288/tjb.570362
  • Bozcu, M., Akgün, F., Gürdal, G., Bozcu, A., Yeşilyurt, S. K., Karaca, Ö., & Akkiraz, M. S. (2015). Evolution of Çan-Etili (Çanakkale-NW Turkey) lignite basin: Sedimentology, petrology, palynology and lignite characterization. International Journal of Sediment Research, 30(3), 190-207. https://doi.org/10.1016/j.ijsrc.2015.03.009

Characterization of Acid Mine Drainage in Tailings and Ore Stock Areas of Coal Mine Areas: Kinetic Test Moisture Cell Method

Year 2024, Volume: 9 Issue: 1, 96 - 113, 29.06.2024
https://doi.org/10.33484/sinopfbd.1379682

Abstract

In addition to evaluating the economic inputs of mining, it is important to examine the symptoms and concerns of the results of these activities. Appropriate legal regulations in the operation of mining facilities are implemented in an integrated manner with mining activities and growth effects in order to prevent negative growth effects on future generations. The most important environmental problems specific to mining are the inability to adequately examine the characterization of wastes and the failure to accurately determine whether these wastes can be obtained over the years. Especially during the opening, operation and separation of coal mines, which are rich in sulfur minerals, the reactions of these minerals are exposed to temperature interruptions and the formation of Acid Mine Drainage (AMD) poses a danger to natural life. In order to estimate the AMD formation potential of ore and waste, static and kinetic tests are applied to determine the mineralogical and chemical composition of the field. Among these tests, the most appropriate test in terms of representing natural conditions is the kinetic test method. Within the scope of the study, field conditions were simulated in columns prepared according to ASTM D5744-18 standard, physical and chemical analyzes of the resulting leachate were performed and the results were evaluated. According to the data obtained, no acid formation was observed during the 20-week test period, and metal emissions were characterized at a low rate. It has been determined that the clay structures in the geology of the sampled area are effective on the leakage rate.

References

  • Saglam, E. S., & Akçay, M. (2016). Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Environmental Science and Pollution Research, 23, 6584–6607. https://doi.org/10.1007/s11356-015-5835-2
  • Paktunc, A. D., & Davé, N. K. (2002). Formation of secondary pyrite and carbonate minerals in the Lower Williams Lake tailings basin, Elliot Lake, Ontario, Canada. American Mineralogist, 87(5-6), 593-602. https://doi.org/10.2138/am-2002-5-601
  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals In El-Din, H., Saleh, M., Aglan, R. F. (Eds), Heavy Metals, IntechOpen. https://books.google.com.tr/books?hl=tr&lr=&id=dnuQDwAAQBAJ&oi=fnd&pg=PA115&dq=Masindi,+Vhahangwele,+and+Khathutshelo+L.+Muedi+.+%22+Environmental+contamination+by+heavy+heavy+metals%E2%80%9D+(2018):+115-132.&ots=UYnqVocWjR&sig=VL9B56igQ7jObrbB2sYDAzXlKS8&redir_esc=y#v=onepage&q&f=false
  • Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 31(1), 108-120.
  • Masindi, V., & Tekere, M. (2020). Innovative routes for acid mine drainage (AMD) valorization: advocating for a circular economy. In Fosso-Kankeu, E., Wolkerdorfer, C., Burgess, J. (Eds), Recovery of Byproducts from Acid Mine Drainage Treatment, Wiley. (pp. 189-218). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119620204.ch7
  • Graham, S., Liu, X., Bartlett, B., Ng, C., Harris, K. R., Aitken, A., Barkel, A., Kavanaugh, C., & Talukdar, J. (2018). Reading for writing: A meta-analysis of the impact of reading interventions on writing. Review of Educational Research, 88(2), 243-284. https://doi.org/10.3102/0034654317746927
  • Zhao, M. M., Chen, Y. P., Xue, L. G., & Fan, T. T. (2020). Three kinds of ammonia oxidizing microorganisms play an important role in ammonia nitrogen self-purification in the Yellow River. Chemosphere, 243, 125405. https://doi.org/10.1016/j.chemosphere.2019.125405
  • Kefeni, K. K., Msagati, T. A., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475-493. https://doi.org/10.1016/j.jclepro.2017.03.082
  • Akinwekomi, V., Maree, J. P., Masindi, V., Zvinowanda, C., Osman, M. S., Foteinis, S., Mpenyana-Monyatsi L., & Chatzisymeon, E. (2020). Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum–Gearing towards a circular economy concept. Minerals Engineering, 148, 106204. https://doi.org/10.1016/j.mineng.2020.106204
  • Modis, K., & Komnitsas, K. (2007). Optimum sampling density for the prediction of acid mine drainage in an underground sulphide mine. Mine Water and the Environment, 26, 237-242. https://doi.org/10.1007/s10230-007-0014-4
  • Geidel, G., Caruccio, F. T., Hornberger, R., & Brady, K. (2000). Guidelines and recommendations for use of kinetic tests for coal mining (AMD) prediction in the eastern US Chapter 5. Prediction of Water Quality at Surface Coal Mines. National Mine Land Reclamation Center, West Virginia University, Morgantown, WV. https://wvwri.wvu.edu/files/d/f0ffc22a-db9b-417f-a895-c3e3dee97477/00-prediction-amd-handbook-kleinmann-2000.pdf
  • Li, J., Wang, W., He, X., Shao, F., &, Bai, Y. (2023). Release characteristics of harmful trace elements during dynamic leaching and static ımmersion of coal gangue in Xinjiang, ACS Omega, 9(1), 393-400. https://doi.org/10.1021/acsomega.3c05736
  • Nicholson, R. V. (1994). Iron-sulfide oxidation mechanisms: laboratory studies. Environmental Geochemistry of Sulphide Mine-Wastes, 22, 163-183.
  • Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785-1803.
  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3-16. https://doi.org/10.1016/j.apgeochem.2015.02.008
  • White, W. W., Lapakko, K. A., & Cox, R. L. (1997). Static-test methods most commonly used to predict acid-mine drainage: Practical guidelines for use and interpretation. In G.S. Plumlee, M.J. Logsdon, & L.F. Filipek (Eds.), The Environmental Geochemistry of Mineral Deposits: Part A: Processes, Techniques, and Health Issues Part B: Case Studies and Research Topics. Society of Economic Geologists, Inc. https://doi.org/10.5382/Rev.06.15
  • Nleya, Y., Simate, G. S., & Ndlovu, S. (2016). Sustainability assessment of the recovery and utilisation of acid from acid mine drainage. Journal of Cleaner Production, 113, 17-27. https://doi.org/10.1016/j.jclepro.2015.11.005
  • Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., & Hellier, W. (1998). Handbook of technologies for avoidance and remediation of acid mine drainage. National Mine Land Reclamation Center, Morgantown, 131. https://wvwri.wvu.edu/files/d/c2e42b2b-e40d-4ada-8bad-3c264d867e76/99-handbook-avoidance-remediation.pdf
  • Kuyucak, N. (2002). Acid mine drainage prevention and control options. CIM Bulletin, 96-102.
  • Okay, A. I., Siyako, M., & Bürkan, K. A. (1991). Geology and tectonic evolution of the Biga Peninsula, northwest Turkey. Bulletin of the Technical University of Istanbul, 44(1-2), 191-256.
  • Siyako, M., Bürkan, K. A., & Okay, A. I. (1989). Tertiary geology and hydrocarbon potential of the Biga and Gelibolu peninsulas. Turkish Association of Petroleum Geologists Bulletin, 1(3), 183-99.
  • Ercan, T., Satır, M., Steınıtz, G., Dora, A., Sarıfakıoğlu, E., Adls, C., Walter, H. J., Yıldırım, T. (1995). Features of the tertiary volcanizm observed at Biga Peninsula and Gökçeada, Tavşan Islands. Bulletin of the Mineral Research and Exploration, 117(117), 40-41.
  • Karaca, Ö., & Bozcu, M. (2019). Determination of tectonic and volcanic structures with the aid of lineaments: example from Çan-Etili (Canakkale) lignite basin. Türkiye Jeoloji Bülteni, 62(3), 247-262. https://doi.org/10.25288/tjb.570362
  • Bozcu, M., Akgün, F., Gürdal, G., Bozcu, A., Yeşilyurt, S. K., Karaca, Ö., & Akkiraz, M. S. (2015). Evolution of Çan-Etili (Çanakkale-NW Turkey) lignite basin: Sedimentology, petrology, palynology and lignite characterization. International Journal of Sediment Research, 30(3), 190-207. https://doi.org/10.1016/j.ijsrc.2015.03.009
There are 24 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Tugay Aktaş 0000-0002-2732-7383

Ömer Faruk Öztürk 0000-0002-9244-6805

Publication Date June 29, 2024
Submission Date October 24, 2023
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Aktaş, T., & Öztürk, Ö. F. (2024). Characterization of Acid Mine Drainage in Tailings and Ore Stock Areas of Coal Mine Areas: Kinetic Test Moisture Cell Method. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 96-113. https://doi.org/10.33484/sinopfbd.1379682


Articles published in Sinopjns are licensed under CC BY-NC 4.0.