Geospatial Assessment of Trophic Status From a Dam Under Significant Agricultural Drainage at the Mid-Anatolia, Türkiye
Year 2024,
Volume: 9 Issue: 2, 572 - 590, 29.12.2024
Mehmet Ali Dereli
,
Hüseyin Cüce
,
Erkan Kalıpcı
Abstract
The population of Anatolia is continuously growing and developing and it is under the deep influence of global warming. It is increasingly evident that more fresh water will be needed for drinking, irrigation and domestic use. This study aims to assess the water quality and trophic status of a dam (Bayramhacılı dam lake) under excessive agricultural irrigation threat using spatial and multivariate statistical analysis. In the study, the periodic changes in the eutrophic state of the dam lake were determined using global index categories, Carlson Trophic Status Index (CTSI = 66.7), Burns Trophic Level Index (BTLI = 6.4), and Shu Trophic State Index (STSI = 65.6). The two periodical averages of total phosphorus (TP), total nitrogen (TN), biological oxygen demand (BOD), (chemical oxygen demand (COD) and chlorophyll a (Chl_a) concentrations, which serve as an indicator of anthropogenic nutrient input, were determined to be 0.23, 31.28, 1.83, 8.99 and 48.1 µg/L, respectively. Trophic index distribution maps demonstrate that the dam’s surface water displays considerable alterations, particularly during the dry season. This evidence supports the implementation of a local management model that addresses the issue of eutrophication. It is therefore imperative that on-site measures are taken without delay.
Ethical Statement
The work does not require ethics committee approval and any private permission.
Supporting Institution
The authors have no received any financial support for the research, authorship, or publication of this study.
References
- Gorenflo, L., & Warner, D. B. (2016). Integrating biodiversity conservation and water development: in search of long‐term solutions. Wiley Interdisciplinary Reviews: Water, 3(3), 301-311. https://doi.org/10.1002/wat2.1142
- Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of The Total Environment, 612, 914-922. https://doi.org/10.1016/j.scitotenv.2017.08.293
- Ravikumar, P., Mehmood, M. A., & Somashekar, R. K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3(1), 247-261. https://doi.org/10.1007/s13201-013-0077-2
- Meguid, M. A. (2017). Key Features of the Egypt’s Water and Agricultural Resources. In: Negm, A.M. (eds) Conventional Water Resources and Agriculture in Egypt. The Handbook of Environmental Chemistry, vol 74. Springer, Cham. (pp. 39-99), Springer https://doi.org/10.1007/698_2017_41
- Rao, K. D. (2005). Multi-criteria spatial decision analysis for forecasting urban water requirements: a case study of Dehradun city, India. Landscape and Urban Planning, 71(2-4), 163-174. https://doi.org/10.1016/j.landurbplan.2004.03.001
- Singh, S., Ghosh, N., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2018). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental monitoring and assessment, 190(1), 29. https://doi.org/10.1007/s10661-017-6407-3
- Tepe, Y., Ateş, A., Mutlu, E. & Töre, Y. 2006. Water quality of Hasan stream (Erzin-Hatay) and its montly variations. E.U. Journal of Fisheries & Aquatic Sciences, 23(1/1), 149-154. https://10.12714/egejfas.2006.23.1.5000156796
- Mutlu, E., Yanık, T., & Demir, T. (2014). Horohon Deresi (Hafik-Sivas) Su Kalitesi Özelliklerinin Aylık Değişimleri. Alinteri Journal of Agriculture Science, 25(2), 45-57.
- Baki, B., & Baki O.G. (2023). Sea Cage Aquaculture. In Marine Environments Trophic Index (Trix). Academic Studies in Agriculture, Forestry and Aquaculture, (Ed: Doğanlar B. and Ellialtioglu Ş.), Gece Kitapligi, 79.
- Karadavut, I. S., Saydam, A. C., Kalipci, E., Karadavut, S., & Özdemir, C. (2011). A research for water pollution of Melendiz stream in terms of sustainability of ecological balance. Carpathian Journal of Earth and Environmental Sciences, 6(1), 65-80.
- Kalipci, E., Cüce, H. & Toprak, S. (2017). Evaluation of surface water quality of Mamasin Reservoir by using geographical information system (GIS). Omer Halisdemir University Journal of Engineering Sciences, 6(2), 351-361. https://doi.org/10.28948/ngumuh.341144
- Töre, Y., Ustaoğlu, F., Tepe, Y., & Kalipci, E. (2021). Levels of toxic metals in edible fish species of the Tigris River (Turkey); Threat to public health. Ecological Indicators, 123, 107361. https://doi.org/10.1016/j.ecolind.2021.107361
- Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M. A., & Türkmen, A. (2022). Integrated spatial distribution and multivariate statistical analysis for assessment of ecotoxicological and health risks of sediment metal contamination, Ömerli Dam (Istanbul, Turkey). Water, Air, & Soil Pollution, 233(6), 199. https://doi.org/10.1007/s11270-022-05670-1
- Cüce, H., Kalıpcı, E., Tas, B. & Yılmaz, M. (2020). Evaluation of the Impacts on Water Quality from Meteorological Changes Due to Differences in Altitude by GIS: A Comparison for Two Morphologically Different Lakes. Karadeniz Fen Bilimleri Dergisi, 10(1), 1-26. https://doi.org/10.31466/kfbd.649297
- Kalipci, E., Cüce, H., Ustaoğlu, F., Dereli, M. A., & Türkmen, M. (2023). Toxicological health risk analysis of hazardous trace elements accumulation in the edible fish species of the Black Sea in Türkiye using multivariate statistical and spatial assessment. Environmental Toxicology and Pharmacology, 97, 104028. https://doi.org/10.1016/j.etap.2022.104028
- Kalipci, E., Cüce, H. & Toprak, S. (2017). Damsa Barajı (Nevşehir) yüzey suyu kalitesinin coğrafi bilgi sistemi ile mekansal analizi. Karaelmas Science and Engineering Journal, 7(1), 312-319.
- Cüce, H. & Bakan, G. (2017). Spatial assessment of the effect of sediment quality on the nutrient levels in shallow waters: Cernek Lake case. Turkish Journal of Agriculture - Food Science and Technology, 5(5), 546-555. https://doi.org/10.24925/turjaf.v5i5.546-555.1104
- Lambrakis, N., Antonakos, A., & Panagopoulos, G. (2004). The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research, 38(7), 1862-1872.
- Mendiguchı́a, C., Moreno, C., Galindo-Riaño, M. D., & Garcı́a-Vargas, M. (2004). Using chemometric tools to assess anthropogenic effects in river water: A case study: Guadalquivir River (Spain). Analytica Chimica Acta, 515(1), 143-149.
- Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119-4124. https://doi.org/10.1016/S0043-1354(03)00398-1
- Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538(1-2), 355-374. https://doi.org/10.1016/j.aca.2005.02.006
- Akbal, F., Gürel, L., Bahadır, T., Güler, İ., Bakan, G., & Büyükgüngör, H. (2011). Multivariate statistical techniques for the assessment of surface water quality at the mid-black sea coast of Turkey. Water, Air, & Soil Pollution, 216, 21-37. https://doi.org/10.1007/s11270-010-0511-0
- Rakotondrabe, F., Ngoupayou, J. R. N., Mfonka, Z., Rasolomanana, E. H., Abolo, A. J. N., & Ako, A. A. (2018). Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Science of the total environment, 610-611, 831-844. https://doi.org/10.1016/j.scitotenv.2017.08.080
- Varol, M., Ustaoğlu, F., & Tokatlı, C. (2022). Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environmental Research, 205, 112478. https://doi.org/10.1016/j.envres.2021.112478
- Ustaoğlu, F., Taş, B., Tepe, Y., & Topaldemir, H. (2021). Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environmental science and pollution research, 28, 62736-62754. https://doi.org/10.1007/s11356-021-15135-3
- Aydın, H., Tepe, Y., & Ustaoğlu, F. (2023). A holistic approach to the eco-geochemical risk assessment of trace elements in the estuarine sediments of the Southeastern Black Sea. Marine Pollution Bulletin, 189, 114732. https://doi.org/10.1016/j.marpolbul.2023.114732
- Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and oceanography, 22(2), 361-369. https://doi.org/10.4319/lo.1977.22.2.0361
- Burns, N. M., Rutherford, J. C., & Clayton, J. S. (1999). A monitoring and classification system for New Zealand lakes and reservoirs. Lake and Reservoir Management, 15(4), 255-271. https://doi.org/10.1080/07438149909354122
- Shu, J. H. (1993). Evaluation of eutrophication degree of main lakes in China. Journal of Oceanology and Limnology, 6, 616-620.
- SWA, (2020). General Directorate of State Water Affairs. http://www.dsi.gov.tr.
- APHA, AWWA, WEF: Rice, E. W., Bridgewater, L., & American Public Health Association (Eds.). (2012). Standard methods for the examination of water and wastewater (Vol. 10). Washington, DC: American public health association.
- Jeppesen, E., Peder Jensen, J., SØndergaard, M., Lauridsen, T., & Landkildehus, F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater biology, 45(2), 201-218. https://doi.org/10.1046/j.1365-2427.2000.00675.x
- Carlson, R. E., & Havens, K. E. (2005). Simple graphical methods for the interpretation of relationships between trophic state variables. Lake and Reservoir Management, 21(1), 107-118. https://doi.org/10.1080/07438140509354418
- Burns, N., McIntosh, J., & Scholes, P. (2005). Strategies for managing the lakes of the Rotorua District, New Zealand. Lake and Reservoir Management, 21(1), 61-72. https://doi.org/10.1080/07438140509354413
- SWQR, (2012). Surface Water Quality Regulation. Official Gazette Number: 28483 (Environmental quality standards for some parameters in surface water masses and their usage purposes).
- Tercan, E., & Dereli, M. A. (2020). Development of a land suitability model for citrus cultivation using GIS and multi-criteria assessment techniques in Antalya province of Turkey. Ecological Indicators, 117, 106549. https://doi.org/10.1016/j.ecolind.2020.106549
- Lee, Y., Ha, S. Y., Park, H. K., Han, M. S., & Shin, K. H. (2015). Identification of key factors influencing primary productivity in two river-type reservoirs by using principal component regression analysis. Environmental Monitoring and Assessment. 187, 213. https://doi.org/10.1007/s10661-015-4438-1
- Manahan, SE., (2011). Water Chemistry: Green Science and Technology of Nature's Most Renewable Resource. Taylor & Francis Group, CRC Press, 398 pages.
- WPCR (2004). Water Pollution and Control Regulation. Official Gazette 25687(Quality Classification of Water Environments).
- Mamun, M., Kim, J. Y., & An, K. G. (2021). Multivariate statistical analysis of water quality and trophic state in an artificial dam reservoir. Water, 13(2), 186. https://doi.org/10.3390/w13020186
- Culha, S. T., & Erdoğuş, M. (2018). Investigations on Some Physicochemical Parameters of Demirköprü Dam Lake (Manisa, Turkey). Turkish Journal of Agriculture-Food Science and Technology, 6(9), 1267-1273. https://doi.org/10.24925/turjaf.v6i9.1267-1273.2032
- Er, B. A., Ayeri, T., Temel, F. A., Turan, N. G., & Ardalı, Y. (2017). Management Model of Lakes as a tool for planning the remediation of Suat Uğurlu Lake. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 732-738. https://doi.org/10.24925/turjaf.v5i7.732-738.1118
- Bulut, C., & Kubilay, A. (2018). Eğirdir Gölü su kalitesinin trofik durum indeksleriyle belirlenmesi. Acta Aquatica Turcica, 14(4), 324-338. https://doi.org/10.22392/egirdir.415073
- Cüce, H. & Bakan, G. (2017). A Evaluation of the effects of sediment quality on trophic status in a shallow lake; The case of Balik Lake (Kizilirmak Delta). Ordu University Journal of Science and Tecnology, 7(1), 83-97.
- Opiyo, S., Getabu, A. M., Sitoki, L. M., Shitandi, A., & Ogendi, G. M. (2019). Application of the Carlson’s trophic state index for the assessment of trophic status of lake Simbi ecosystem, a deep alkaline-saline lake in Kenya. International Journal of Fisheries and Aquatic Studies, 7(4), 327-333. https://dx.doi.org/10.2139/ssrn.3451145
- Bilgin, A. (2020). Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake. Environmental monitoring and assessment, 192, 1-19. https://doi.org/10.1007/s10661-020-08741-0
- Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6
- Iscen, C. F., Emiroglu, Ö., Ilhan, S., Arslan, N., Yılmaz, V., Ahiska, S. (2008). Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environmental Monitoring and Assessment, 144, 269–276. https://doi.org/10.1007/s10661-007-9989-3
Orta Anadolu'da Önemli Tarımsal Drenaj Altındaki Bir Barajın Trofik Durumunun Jeo-Konumsal Değerlendirmesi, Türkiye
Year 2024,
Volume: 9 Issue: 2, 572 - 590, 29.12.2024
Mehmet Ali Dereli
,
Hüseyin Cüce
,
Erkan Kalıpcı
Abstract
Küresel ısınmanın derin etkisi altında olan Anadolu'da nüfusun sürekli büyümesi ve gelişmesi içme, sulama ve evsel kullanım için daha fazla tatlı suya ihtiyaç duyulacağını giderek daha belirgin hale getirmektedir. Bu çalışmanın amacı, aşırı tarımsal sulama tehdidi altındaki bir barajın (Bayramhacılı baraj gölü) su kalitesi ve trofik durumunun mekansal ve çok değişkenli istatistiksel analizler kullanılarak değerlendirilmesidir. Araştırmada ötrofiksel durumdaki baraj gölündeki periyodik değişiklikler; global indeks kategorileri, Carlson trofik durum indeksi (CTSI = 66.7), Burns trofik seviye indeksi (BTLI = 6.4) ve Shu trofik durum indeksi (STSI = 65.6) ile belirlenmiştir. Antropojenik besin girdisinin göstergesi olan toplam fosfor (TP), toplam azot (TN), biyolojik oksijen ihtiyacı (BOD), kimysasal oksijen ihtiyacı (COD) ve klorofil a (Chl_a) konsantrasyonlarının iki periyodik ortalaması sırasıyla 0.23, 31.28, 1.83, 8.99 ve 48.1 µg/L olarak belirlenmiştir. Trofik indeks dağılım haritaları, baraj yüzey suyunun özellikle kurak mevsimde önemli değişiklikler gösterdiğini göstermektedir. Bu kanıt, ötrofikasyon sorununu ele alan yerel bir yönetim modelinin uygulanmasını desteklemektedir. Bu nedenle yerinde önlemlerin gecikmeksizin alınması zorunludur.
References
- Gorenflo, L., & Warner, D. B. (2016). Integrating biodiversity conservation and water development: in search of long‐term solutions. Wiley Interdisciplinary Reviews: Water, 3(3), 301-311. https://doi.org/10.1002/wat2.1142
- Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of The Total Environment, 612, 914-922. https://doi.org/10.1016/j.scitotenv.2017.08.293
- Ravikumar, P., Mehmood, M. A., & Somashekar, R. K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3(1), 247-261. https://doi.org/10.1007/s13201-013-0077-2
- Meguid, M. A. (2017). Key Features of the Egypt’s Water and Agricultural Resources. In: Negm, A.M. (eds) Conventional Water Resources and Agriculture in Egypt. The Handbook of Environmental Chemistry, vol 74. Springer, Cham. (pp. 39-99), Springer https://doi.org/10.1007/698_2017_41
- Rao, K. D. (2005). Multi-criteria spatial decision analysis for forecasting urban water requirements: a case study of Dehradun city, India. Landscape and Urban Planning, 71(2-4), 163-174. https://doi.org/10.1016/j.landurbplan.2004.03.001
- Singh, S., Ghosh, N., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2018). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental monitoring and assessment, 190(1), 29. https://doi.org/10.1007/s10661-017-6407-3
- Tepe, Y., Ateş, A., Mutlu, E. & Töre, Y. 2006. Water quality of Hasan stream (Erzin-Hatay) and its montly variations. E.U. Journal of Fisheries & Aquatic Sciences, 23(1/1), 149-154. https://10.12714/egejfas.2006.23.1.5000156796
- Mutlu, E., Yanık, T., & Demir, T. (2014). Horohon Deresi (Hafik-Sivas) Su Kalitesi Özelliklerinin Aylık Değişimleri. Alinteri Journal of Agriculture Science, 25(2), 45-57.
- Baki, B., & Baki O.G. (2023). Sea Cage Aquaculture. In Marine Environments Trophic Index (Trix). Academic Studies in Agriculture, Forestry and Aquaculture, (Ed: Doğanlar B. and Ellialtioglu Ş.), Gece Kitapligi, 79.
- Karadavut, I. S., Saydam, A. C., Kalipci, E., Karadavut, S., & Özdemir, C. (2011). A research for water pollution of Melendiz stream in terms of sustainability of ecological balance. Carpathian Journal of Earth and Environmental Sciences, 6(1), 65-80.
- Kalipci, E., Cüce, H. & Toprak, S. (2017). Evaluation of surface water quality of Mamasin Reservoir by using geographical information system (GIS). Omer Halisdemir University Journal of Engineering Sciences, 6(2), 351-361. https://doi.org/10.28948/ngumuh.341144
- Töre, Y., Ustaoğlu, F., Tepe, Y., & Kalipci, E. (2021). Levels of toxic metals in edible fish species of the Tigris River (Turkey); Threat to public health. Ecological Indicators, 123, 107361. https://doi.org/10.1016/j.ecolind.2021.107361
- Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M. A., & Türkmen, A. (2022). Integrated spatial distribution and multivariate statistical analysis for assessment of ecotoxicological and health risks of sediment metal contamination, Ömerli Dam (Istanbul, Turkey). Water, Air, & Soil Pollution, 233(6), 199. https://doi.org/10.1007/s11270-022-05670-1
- Cüce, H., Kalıpcı, E., Tas, B. & Yılmaz, M. (2020). Evaluation of the Impacts on Water Quality from Meteorological Changes Due to Differences in Altitude by GIS: A Comparison for Two Morphologically Different Lakes. Karadeniz Fen Bilimleri Dergisi, 10(1), 1-26. https://doi.org/10.31466/kfbd.649297
- Kalipci, E., Cüce, H., Ustaoğlu, F., Dereli, M. A., & Türkmen, M. (2023). Toxicological health risk analysis of hazardous trace elements accumulation in the edible fish species of the Black Sea in Türkiye using multivariate statistical and spatial assessment. Environmental Toxicology and Pharmacology, 97, 104028. https://doi.org/10.1016/j.etap.2022.104028
- Kalipci, E., Cüce, H. & Toprak, S. (2017). Damsa Barajı (Nevşehir) yüzey suyu kalitesinin coğrafi bilgi sistemi ile mekansal analizi. Karaelmas Science and Engineering Journal, 7(1), 312-319.
- Cüce, H. & Bakan, G. (2017). Spatial assessment of the effect of sediment quality on the nutrient levels in shallow waters: Cernek Lake case. Turkish Journal of Agriculture - Food Science and Technology, 5(5), 546-555. https://doi.org/10.24925/turjaf.v5i5.546-555.1104
- Lambrakis, N., Antonakos, A., & Panagopoulos, G. (2004). The use of multicomponent statistical analysis in hydrogeological environmental research. Water Research, 38(7), 1862-1872.
- Mendiguchı́a, C., Moreno, C., Galindo-Riaño, M. D., & Garcı́a-Vargas, M. (2004). Using chemometric tools to assess anthropogenic effects in river water: A case study: Guadalquivir River (Spain). Analytica Chimica Acta, 515(1), 143-149.
- Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119-4124. https://doi.org/10.1016/S0043-1354(03)00398-1
- Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538(1-2), 355-374. https://doi.org/10.1016/j.aca.2005.02.006
- Akbal, F., Gürel, L., Bahadır, T., Güler, İ., Bakan, G., & Büyükgüngör, H. (2011). Multivariate statistical techniques for the assessment of surface water quality at the mid-black sea coast of Turkey. Water, Air, & Soil Pollution, 216, 21-37. https://doi.org/10.1007/s11270-010-0511-0
- Rakotondrabe, F., Ngoupayou, J. R. N., Mfonka, Z., Rasolomanana, E. H., Abolo, A. J. N., & Ako, A. A. (2018). Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Science of the total environment, 610-611, 831-844. https://doi.org/10.1016/j.scitotenv.2017.08.080
- Varol, M., Ustaoğlu, F., & Tokatlı, C. (2022). Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environmental Research, 205, 112478. https://doi.org/10.1016/j.envres.2021.112478
- Ustaoğlu, F., Taş, B., Tepe, Y., & Topaldemir, H. (2021). Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environmental science and pollution research, 28, 62736-62754. https://doi.org/10.1007/s11356-021-15135-3
- Aydın, H., Tepe, Y., & Ustaoğlu, F. (2023). A holistic approach to the eco-geochemical risk assessment of trace elements in the estuarine sediments of the Southeastern Black Sea. Marine Pollution Bulletin, 189, 114732. https://doi.org/10.1016/j.marpolbul.2023.114732
- Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology and oceanography, 22(2), 361-369. https://doi.org/10.4319/lo.1977.22.2.0361
- Burns, N. M., Rutherford, J. C., & Clayton, J. S. (1999). A monitoring and classification system for New Zealand lakes and reservoirs. Lake and Reservoir Management, 15(4), 255-271. https://doi.org/10.1080/07438149909354122
- Shu, J. H. (1993). Evaluation of eutrophication degree of main lakes in China. Journal of Oceanology and Limnology, 6, 616-620.
- SWA, (2020). General Directorate of State Water Affairs. http://www.dsi.gov.tr.
- APHA, AWWA, WEF: Rice, E. W., Bridgewater, L., & American Public Health Association (Eds.). (2012). Standard methods for the examination of water and wastewater (Vol. 10). Washington, DC: American public health association.
- Jeppesen, E., Peder Jensen, J., SØndergaard, M., Lauridsen, T., & Landkildehus, F. (2000). Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater biology, 45(2), 201-218. https://doi.org/10.1046/j.1365-2427.2000.00675.x
- Carlson, R. E., & Havens, K. E. (2005). Simple graphical methods for the interpretation of relationships between trophic state variables. Lake and Reservoir Management, 21(1), 107-118. https://doi.org/10.1080/07438140509354418
- Burns, N., McIntosh, J., & Scholes, P. (2005). Strategies for managing the lakes of the Rotorua District, New Zealand. Lake and Reservoir Management, 21(1), 61-72. https://doi.org/10.1080/07438140509354413
- SWQR, (2012). Surface Water Quality Regulation. Official Gazette Number: 28483 (Environmental quality standards for some parameters in surface water masses and their usage purposes).
- Tercan, E., & Dereli, M. A. (2020). Development of a land suitability model for citrus cultivation using GIS and multi-criteria assessment techniques in Antalya province of Turkey. Ecological Indicators, 117, 106549. https://doi.org/10.1016/j.ecolind.2020.106549
- Lee, Y., Ha, S. Y., Park, H. K., Han, M. S., & Shin, K. H. (2015). Identification of key factors influencing primary productivity in two river-type reservoirs by using principal component regression analysis. Environmental Monitoring and Assessment. 187, 213. https://doi.org/10.1007/s10661-015-4438-1
- Manahan, SE., (2011). Water Chemistry: Green Science and Technology of Nature's Most Renewable Resource. Taylor & Francis Group, CRC Press, 398 pages.
- WPCR (2004). Water Pollution and Control Regulation. Official Gazette 25687(Quality Classification of Water Environments).
- Mamun, M., Kim, J. Y., & An, K. G. (2021). Multivariate statistical analysis of water quality and trophic state in an artificial dam reservoir. Water, 13(2), 186. https://doi.org/10.3390/w13020186
- Culha, S. T., & Erdoğuş, M. (2018). Investigations on Some Physicochemical Parameters of Demirköprü Dam Lake (Manisa, Turkey). Turkish Journal of Agriculture-Food Science and Technology, 6(9), 1267-1273. https://doi.org/10.24925/turjaf.v6i9.1267-1273.2032
- Er, B. A., Ayeri, T., Temel, F. A., Turan, N. G., & Ardalı, Y. (2017). Management Model of Lakes as a tool for planning the remediation of Suat Uğurlu Lake. Turkish Journal of Agriculture-Food Science and Technology, 5(7), 732-738. https://doi.org/10.24925/turjaf.v5i7.732-738.1118
- Bulut, C., & Kubilay, A. (2018). Eğirdir Gölü su kalitesinin trofik durum indeksleriyle belirlenmesi. Acta Aquatica Turcica, 14(4), 324-338. https://doi.org/10.22392/egirdir.415073
- Cüce, H. & Bakan, G. (2017). A Evaluation of the effects of sediment quality on trophic status in a shallow lake; The case of Balik Lake (Kizilirmak Delta). Ordu University Journal of Science and Tecnology, 7(1), 83-97.
- Opiyo, S., Getabu, A. M., Sitoki, L. M., Shitandi, A., & Ogendi, G. M. (2019). Application of the Carlson’s trophic state index for the assessment of trophic status of lake Simbi ecosystem, a deep alkaline-saline lake in Kenya. International Journal of Fisheries and Aquatic Studies, 7(4), 327-333. https://dx.doi.org/10.2139/ssrn.3451145
- Bilgin, A. (2020). Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake. Environmental monitoring and assessment, 192, 1-19. https://doi.org/10.1007/s10661-020-08741-0
- Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6
- Iscen, C. F., Emiroglu, Ö., Ilhan, S., Arslan, N., Yılmaz, V., Ahiska, S. (2008). Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environmental Monitoring and Assessment, 144, 269–276. https://doi.org/10.1007/s10661-007-9989-3