Year 2019,
Volume: 2 Issue: 4, 136 - 140, 30.12.2019
Shazia Perveen
Tasveer Ishtiaq
Faryal Anwar
Maryam Saeed
Sana Farooq
Kainat Sardar
Rafia Kanwal
Sumaira Kanwal
References
- [1]. Mu, X., Chai, T., Wang, K., Zhang, J., Zhu, L., Li, X., & Wang, C. (2015a). Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages. Aquatic Toxicology, 160, 57-68.
[2]. Mu, X., Chai, T., Wang, K., Zhu, L., Huang, Y., Shen, G., . . . Wang, C. (2016). The developmental effect of difenoconazole on zebrafish embryos: A mechanism research. Environmental pollution, 212, 18-26.
[3]. Mu, X., Pang, S., Sun, X., Gao, J., Chen, J., Chen, X., . . . Wang, C. J. E. p. (2013). Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. 175, 147-157.
[4]. Teng, M., Qi, S., Zhu, W., Wang, Y., Wang, D., Dong, K., & Wang, C. J. E. p. (2018). Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio). 233, 208-217.
[5]. Mu, X., Chai, T., Wang, K., Zhang, J., Zhu, L., Li, X., & Wang, C. J. A. T. (2015b). Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages. 160, 57-68.
[6]. Teng, M., Qi, S., Zhu, W., Wang, Y., Wang, D., Yang, Y., . . . safety, e. (2017). Sex-specific effects of difenoconazole on the growth hormone endocrine axis in adult zebrafish (Danio rerio). 144, 402-408.
[7]. Liang, X., Yu, L., Gui, W., Zhu, G. J. E. t., & pharmacology. (2015). Exposure to difenoconazole causes changes of thyroid hormone and gene expression levels in zebrafish larvae. 40(3), 983-987.
[8]. Zhang, L., Dong, X., Wang, C., Zuo, Z., & Chen, M. J. J. o. E. S. (2017). Bioaccumulation and the expression of hepatic cytochrome P450 genes in marine medaka (Oryzias melastigma) exposed to difenoconazole. 52, 98-104.
[9]. Crincoli, C. M., Patel, N. N., Tchao, R., & Harvison, P. J. (2008). Role of biotransformation in 3-(3, 5-dichlorophenyl)-2, 4-thiazolidinedione-induced hepatotoxicity in Fischer 344 rats. Toxicology, 250(2-3), 100-108.
[10]. Lehtinen, K.-J., & Tana, J. (2001). Review of endocrine disrupting natural compounds and endocrine effects of pulp and paper mill and municipal sewage effluents.
[11]. Toppari, J., Larsen, J. C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette Jr, L. J., . . . Keiding, N. (1996). Male reproductive health and environmental xenoestrogens. Environmental health perspectives, 104(suppl 4), 741-803.
[12]. Hester, S. D., & Nesnow, S. (2008). Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide. Toxicology and applied pharmacology, 227(3), 357-369.
[13]. Bukowska, B., Chajdys, A., Duda, W., & Duchnowicz, P. (2000). Catalase activity in human erythrocytes: effect of phenoxyherbicides and their metabolites. Cell Biology International, 24(10), 705-711.
[14]. Palmeira, C. M., Moreno, A. J., & Madeira, V. M. (1994). Interactions of herbicides 2, 4-D and dinoseb with liver mitochondrial bioenergetics. Toxicology and applied pharmacology, 127(1), 50-57.
[15]. Romero‐Puertas, M., McCarthy, I., Gómez, M., Sandalio, L., Corpas, F., Del Rio, L., & Palma, J. (2004). Reactive oxygen species‐mediated enzymatic systems involved in the oxidative action of 2, 4‐dichlorophenoxyacetic acid. Plant, Cell & Environment, 27(9), 1135-1148.
[16]. Abd-Alrahman, S. H., Elhalwagy, M. E., Kotb, G. A., Farid, H., Farag, A. A., Draz, H. M., . . . Sabico, S. (2014). Exposure to difenoconazole, diclofop-methyl alone and combination alters oxidative stress and biochemical parameters in albino rats. International journal of clinical and experimental medicine, 7(10), 3637.
[17]. Baxter, J., & Cummings, S. (2008). The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. Journal of applied microbiology, 104(6), 1605-1616.
[18]. Popescu, R., Vlad, D. C., Borozan, A., Bordean, D., Cimporescu, A. M., & Craciun, A. (2013). Enzymological studies on Timis and Bega rivers in order to determine the degree of pollution. Annales of West University of Timisoara. Series of Biology, 16(1), 47.
[19]. Filimon, M. N., Maniu, P., & Bran, M. G. (2016). The Effect Of High Difenoconazole Concentration On Soil Microbiota Assessed By Microbiological Analysis. Annales of West University of Timisoara. Series of Biology, 19(2), 187.
Effect of diflubenzuron on the development of chick embryo
Year 2019,
Volume: 2 Issue: 4, 136 - 140, 30.12.2019
Shazia Perveen
Tasveer Ishtiaq
Faryal Anwar
Maryam Saeed
Sana Farooq
Kainat Sardar
Rafia Kanwal
Sumaira Kanwal
Abstract
Aim: To check the effect of drug Difenoconazole on chick embryo. Difenoconazole which is a fungicide sprayed on plants and cause toxic effect on non -targeted species. Few studies have investigated that body weight of zebra fish reduced by difenoconazole. Our aim of study to see the effect of Difenoconazole on chick embryo growth.
Methodology: A total 56 eggs were selected and categorized into four groups (one control and other three were treated groups). At fifth day of incubation were treated with drug and first sacrificed done on eleventh day of incubation for examination. Three eggs from each group were sacrificed. The second sacrificed done on nineteen day of incubation three eggs from each group were sacrificed and examined their growth.
Major findings: Higher growth was observed in the control group. In treatment 1, heart formation and angiogenesis was occurred. In treatment 2, mostly eggs aborted and some showed little growth. While results of treatment 3 showed very little development of chick embryo. Thus, higher doses of difenoconazole proved more toxic and lethal.
Implications of the study: This study demonstrates that difenoconazole has a significant teratogenic potential on chick embryo because it caused abortion and inhibits the growth and development of chick embryo, thus its use should be limited.
References
- [1]. Mu, X., Chai, T., Wang, K., Zhang, J., Zhu, L., Li, X., & Wang, C. (2015a). Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages. Aquatic Toxicology, 160, 57-68.
[2]. Mu, X., Chai, T., Wang, K., Zhu, L., Huang, Y., Shen, G., . . . Wang, C. (2016). The developmental effect of difenoconazole on zebrafish embryos: A mechanism research. Environmental pollution, 212, 18-26.
[3]. Mu, X., Pang, S., Sun, X., Gao, J., Chen, J., Chen, X., . . . Wang, C. J. E. p. (2013). Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. 175, 147-157.
[4]. Teng, M., Qi, S., Zhu, W., Wang, Y., Wang, D., Dong, K., & Wang, C. J. E. p. (2018). Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio). 233, 208-217.
[5]. Mu, X., Chai, T., Wang, K., Zhang, J., Zhu, L., Li, X., & Wang, C. J. A. T. (2015b). Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio reio) during different life stages. 160, 57-68.
[6]. Teng, M., Qi, S., Zhu, W., Wang, Y., Wang, D., Yang, Y., . . . safety, e. (2017). Sex-specific effects of difenoconazole on the growth hormone endocrine axis in adult zebrafish (Danio rerio). 144, 402-408.
[7]. Liang, X., Yu, L., Gui, W., Zhu, G. J. E. t., & pharmacology. (2015). Exposure to difenoconazole causes changes of thyroid hormone and gene expression levels in zebrafish larvae. 40(3), 983-987.
[8]. Zhang, L., Dong, X., Wang, C., Zuo, Z., & Chen, M. J. J. o. E. S. (2017). Bioaccumulation and the expression of hepatic cytochrome P450 genes in marine medaka (Oryzias melastigma) exposed to difenoconazole. 52, 98-104.
[9]. Crincoli, C. M., Patel, N. N., Tchao, R., & Harvison, P. J. (2008). Role of biotransformation in 3-(3, 5-dichlorophenyl)-2, 4-thiazolidinedione-induced hepatotoxicity in Fischer 344 rats. Toxicology, 250(2-3), 100-108.
[10]. Lehtinen, K.-J., & Tana, J. (2001). Review of endocrine disrupting natural compounds and endocrine effects of pulp and paper mill and municipal sewage effluents.
[11]. Toppari, J., Larsen, J. C., Christiansen, P., Giwercman, A., Grandjean, P., Guillette Jr, L. J., . . . Keiding, N. (1996). Male reproductive health and environmental xenoestrogens. Environmental health perspectives, 104(suppl 4), 741-803.
[12]. Hester, S. D., & Nesnow, S. (2008). Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide. Toxicology and applied pharmacology, 227(3), 357-369.
[13]. Bukowska, B., Chajdys, A., Duda, W., & Duchnowicz, P. (2000). Catalase activity in human erythrocytes: effect of phenoxyherbicides and their metabolites. Cell Biology International, 24(10), 705-711.
[14]. Palmeira, C. M., Moreno, A. J., & Madeira, V. M. (1994). Interactions of herbicides 2, 4-D and dinoseb with liver mitochondrial bioenergetics. Toxicology and applied pharmacology, 127(1), 50-57.
[15]. Romero‐Puertas, M., McCarthy, I., Gómez, M., Sandalio, L., Corpas, F., Del Rio, L., & Palma, J. (2004). Reactive oxygen species‐mediated enzymatic systems involved in the oxidative action of 2, 4‐dichlorophenoxyacetic acid. Plant, Cell & Environment, 27(9), 1135-1148.
[16]. Abd-Alrahman, S. H., Elhalwagy, M. E., Kotb, G. A., Farid, H., Farag, A. A., Draz, H. M., . . . Sabico, S. (2014). Exposure to difenoconazole, diclofop-methyl alone and combination alters oxidative stress and biochemical parameters in albino rats. International journal of clinical and experimental medicine, 7(10), 3637.
[17]. Baxter, J., & Cummings, S. (2008). The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. Journal of applied microbiology, 104(6), 1605-1616.
[18]. Popescu, R., Vlad, D. C., Borozan, A., Bordean, D., Cimporescu, A. M., & Craciun, A. (2013). Enzymological studies on Timis and Bega rivers in order to determine the degree of pollution. Annales of West University of Timisoara. Series of Biology, 16(1), 47.
[19]. Filimon, M. N., Maniu, P., & Bran, M. G. (2016). The Effect Of High Difenoconazole Concentration On Soil Microbiota Assessed By Microbiological Analysis. Annales of West University of Timisoara. Series of Biology, 19(2), 187.