Research Article
BibTex RIS Cite

Türkiye Yağış Şiddeti Serilerinin Homojenlik Analizi

Year 2022, Volume: 5 Issue: 2, 123 - 137, 31.12.2022
https://doi.org/10.51764/smutgd.1097444

Abstract

Bu çalışmada, Meteoroloji Genel Müdürlüğü tarafından işletilen 103 istasyondan 30 ile 78 yıl arasında değişen periyotlar için yıllık maksimum yağış şiddeti serilerinin homojenlik kontrolü yapılmıştır. Mutlak homojenlik testleri olarak bilinen Standart Normal Homojenlik Testi (SNHT), Buishand Aralık Testi (BRT), Pettitt Testi (PT) ve Von Neumann Oran Testi (VNRT) %95 güven aralığında uygulanmıştır. Standart süre verilerinden en az biri şüpheli veya sorunlu ise, istasyon homojen değil olarak sınıflandırılmıştır. Homojenliği bozan faktörün muhtemel trend bileşenleri olduğu varsayılarak, trend bileşenleri ayrılmıştır. Daha sonra, yağış şiddeti serilerin mutlak homojenlik testleri yeniden uygulanmıştır. Analizler sonucunda 103 istasyonun 49'u 14 standart sürenin tamamında kullanılabilir olarak sınıflandırılmıştır. Kalan 54 istasyonun 45'i, trend bileşenlerinden sonra tüm standart süreleri kullanılabilir olarak sınıflandırılmıştır. 103 istasyondan geriye kalan 8’inde ise trend bileşenleri ayrıldıktan sonra homojen olmayan değerlere sahip olduğu tespit edilmiştir.

References

  • Agha OMAM., Bagcaci SC., Sarlak N. Homogeneity analysis of precipitation series in North Iraq. IOSR Journal of Applied Geology and Geophysics 2017; 5(3) Ver. II: 57–63.
  • Ahmed K., Nawaz N., Khan N., Rasheed B., Baloch A. Inhomogeneity detection in the precipitation series: case of arid province of Pakistan. Environment, Development and Sustainability 2021; 23:7176–7192. https://doi.org/10.1007/s10668-020-00910-y
  • Aksu H., Cetin M., Aksoy H., Yaldiz SG., Yildirim I., Keklik G. Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey. Natural Hazards 2022; 111: 2379–2405. https://doi.org/10.1007/s11069-021-05141-6
  • Alexandersson H. A homogeneity test applied to precipitation data. Journal of Climate 1986; 6(6):661–675 https://doi.org/10.1002/joc.3370060607
  • Alexandersson H., Moberg A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology 1997; 17(1): 25-34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
  • Ay M. Trend and homogeneity analysis in temperature and rainfall series in western Black Sea region, Turkey. Theoretical and Applied Climatology 2020; 139: 837–848. https://doi.org/10.1007/s00704-019-03066-6
  • Ay M. Trend tests on maximum rainfall series by a novel approach in the Aegean region, Turkey. and Atmospheric Physics 2021; 133: 1041–1055. https://doi.org/10.1007/s00703-021-00795-0
  • Bickici Arikan B. Prediction of drought ındices based on hydroclimatological data. Istanbul Technical University PhD Thesis, Istanbul, Turkey, 2018.
  • Bickici Arikan B., Kahya E. Homogeneity revisited: analysis of updated precipitation series in Turkey. Theoretical and Applied Climatology 2018; 135(1–2): 1–10. https://doi.org/10.1007/s00704-018-2368-x
  • Buishand TA. The analysis of homogeneity of long-term rainfall records in the Netherlands. The Royal Netherlands Meteorological Institute, 1981
  • Buishand TA. Some methods for testing of rainfall records. Journal of Hydraulics 1982; 58(1-2): 11–27. https://doi.org/10.1016/0022-1694(82)90066-X
  • Conrad V., Pollak C. Methods in climatology. Cambridge: Harvard University Press, 1950.
  • Demir S., Karakaya K., Kavuncu O., Akdoğan, Y. trend analysis of climate parameters of Ordu province and determination of change point. Gaziosmanpasa Journal of Scientific Research 2021; 10(1): 128-141.
  • Em A., Hamidi N., Toprak, ZF. Variation in annual total precipitation and its homegeneous analysis at GAP Region. 1st Turkey Climate Change Congress, 11-13 April 2007, 379-393, Istanbul.
  • Eris E., Agiralioglu N. Homogeneity and trend analysis of hydrometeorological data of the Eastern Black Sea Region, Turkey. Journal of Water Resource and Protection 2012; 4(2): 99-105. https://doi.org/10.4236/jwarp.2012.42012
  • Feng S., Hu Q., Qian W. Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal of Climatology 2004; 24(7): 853–870. https://doi.org/10.1002/joc.1047
  • Firat M., Dikbas F., Koc AC., Gungor M. Missing data analysis and homogeneity test for Turkish precipitation series. Sadhana-Academy Proceedings in Engineering Sciences 2010; 35(6): 707–720. https://doi.org/10.1007/s12046-010-0051-8
  • Gokturk OM., Bozkurt D., Sen OL., Karaca M. Quality control and homogeneity of Turkish precipitation data. Hydrological Processes 2008; 22(16), 3210–3218. https://doi.org/10.1002/hyp.6915
  • Gonzalez-Rouca JF., Jimenez JL., Quesada V., Valero F. Quality control and homogeneity of precipitation data in the Southwest of Europe. Journal of Climate 2001; 14: 964-978. https://doi.org/10.1175/1520-0442(2001)014<0964:QCAHOP>2.0.CO;2
  • Haktanir T., Citakoglu H. Trend, independence, stationarity and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. Journal of Hydrologic Engineering 2014; 19(9): 1–13. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000973
  • Hanssen-Bauer I., Førland J. Homogenizing long Norwegian precipitation series. Journal of Climate 1994; 7: 1001–1013. https://doi.org/10.1175/1520-0442(1994)007<1001:HLNPS>2.0.CO;2
  • Houghton J., Callendar BA., Varney SK., Eds. (1992): Climate Change: The Supplementary Report to the IPCC Scientific Assesment. Cambridge University Press.
  • Jaruskova D. Change-point detection in meteorological measurement. Monthly Weather Review 1996; 124: 1535-1543. https://doi.org/10.1175/1520-0493(1996)124<1535:CPDIMM>2.0.CO;2
  • Kahya E., Cigizoglu HK., Dorum A., Karabork MC., Kömüşcü UA., Cengiz MT., Martı IA., Tarhan M. El Nino ve La Nina Olaylarının Etkileri ile Türkiye’deki Yağış Zaman Serilerinin Karakteristik Özelliklerindeki ve Dağılımlarındaki Değişkenlerin Analizi, YDABAG 102Y146, Research Project. The Scientific and Technological Research Council of Turkey (TUBITAK), Turkey (in Turkish), 2006.
  • Kang HM., Yusof F. Homogeneity tests on daily rainfall series in Peninsular Malaysia. International Journal of Contemporary Mathematical Sciences 2012; 7(1): 9-22.
  • Karabork MC., Kahya E., Komuscu AU. Analysis of Turkish precipitation data homogeneity and the Southern Oscillation forcings on frequency distributions. Hydrological Processes 2007; 21(23): 3203–3210. https://doi.org/10.1002/hyp.6524
  • Khalil A. Inhomogeneity detection in the rainfall series for the Mae Klong River Basin, Thailand. Applied Water Science 2021; 11:147. https://doi.org/10.1007/s13201-021-01474-6
  • Mair A., Fares A. Assessing rainfall data homogeneity and estimating missing records in Mākaha Valley, O‘ahu, Hawai‘i. Journal of Hydrologic Engineering 2010; 15(1): 61-66. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000145 Owen DB. Handbook of Statistical Tables. Addison-Wesley, Reading, Mass: Addison-Wesley Pub. Co., 1962.
  • Peng CK., Buldyrev SV., Havtin S., Simons IM., Stanley HE., Goldberger AL. Mosaic organization of DNA nucleotides. Physical Review E 1994; 49(2): 1685–1689. https://doi.org/10.1103/physreve.49.1685
  • Peng CK., Havlin S., Stanley HE., Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5(1): 82-87. https://doi.org/10.1063/1.166141
  • Peterson, TC., Easterling DR. Creation of homogeneous composite climatological reference series. International Journal of Climatology 1994; 14(6):671-679. https://doi.org/10.1002/joc.3370140606
  • Pettitt AN. A non-parametric approach to the change-point detection. Applied Statistics 1979; 28(2): 126–135. https://doi.org/10.2307/2346729
  • Pirnia A., Golshan M., Darabi H., Adamowski J., Rozbeh S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change 2019; 10(4): 725–742. https://doi.org/10.2166/wcc.2018.162
  • Sahin S. Applying artificial neural networks on determining climate zones and comparison with the Ward’s Method. Istanbul Technical University PhD Thesis, Istanbul, Turkey, 2009.
  • Sahin S., Cigizoglu HK. Homogeneity analysis of Turkish meteorological data set. Hydrological Processes 2010; 24(8): 981–992. https://doi.org/10.1002/hyp.7534
  • Salarijazi M., Akhond AA., Adib A., Daneshkhah A. Trend and change-point detection for the annual stream-flow series of the Karun river at the Ahvaz hydrometric station. African Journal of Agricultural Research 2012 7(32): 4540–4552. https://doi.org/10.5897/AJAR12.650
  • Schonwiese CD., Rapp J. Climate Trend Atlas of Europe Based on Observations 1891–1990. Dordrecht: Kluwer Academic Publishers, 1997.
  • Serra C., Burguen A., Lana X. Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917–1998. International Journal of Climatology 2001; 21(5): 617–636. https://doi.org/10.1002/joc.633
  • Sonmez I. Quality control tests for western Turkey Mesonet. Meteorological Application 2013; 20(3): 330–337. https://doi.org/10.1002/met.1286
  • Suhaila J., Deni SM., Jemain AZ. Detecting inhomogeneity in Peninsular Malaysian rainfall series. Asia-Pacific Journal of the Atmospheric Sciences 2008; 44(4): 369-380.
  • Suhaila J., Yusop Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics 2018; 130(5): 565–581. https://doi.org/10.1007/s00703-017-0537-6
  • Talaee PH., Kouchakzadeh M., Shifteh Some’e B. Homogeneity analysis of precipitation series in Iran. Theoretical and Applied Climatology 2014; 118(1–2): 297–305. https://doi.org/10.1007/s00704-013-1074-y
  • Tayanc M., Dalfes H., Karaca M., Yenigün O. A comparative assessment of different methods for detecting in homogeneities in Turkish temperature data set. International Journal of Climatology 1998; 18(5): 561–578. https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<561::AID-JOC249>3.0.CO;2-Y
  • Tsega M., Tibebe D. Homogeneity tests on rainfall records for selected meteorological stations in Ethiopia. dvanced Journal of Agricultural Research and Reviews 2018; 2(3): 72–78.
  • Turkes M. Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology 1996; 16: 1057–1076. https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<1057::AID-JOC75>3.0.CO;2-D
  • Turkes M. Spatial and temporal variations in precipitation and aridity index series of Turkey. In: Bolle HJJ. (ed.) Mediterranean Climate. Heidelberg: Springer Verlag 2002; 181-213. https://doi.org/10.1007/978-3-642-55657-9_11
  • Turkes M., Sumer UM., Kilic G. Observed changes in maximum and minimum temperatures in Turkey. International Journal of Climatology 1996; 16(4): 463-477. https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<463::AID-JOC13>3.0.CO;2-G
  • Turkes M., Sumer UM., Kilic G. Persistence and periodicity in the precipitation series of Turkey and associations with 500 hPa geopotantial heights. Climate Research 2002; 21: 59-81. https://doi.org/10.3354/cr021059
  • Turkish State Meteorological Service (TSMS). Standart Zamanlardaki Maksimum Yağışlar ve Tekerrür Analizi. Ankara, Turkey. https://mgm.gov.tr/genel/hidrometeoroloji.aspx?s=6 .
  • Von Neumann J. Distribution of the ratio of the mean square successive difference to the variance. Annals of Mathematical Statistics 1941; 13: 367– 395. https://doi.org/10.1214/aoms/1177731677
  • Wijngaard JB., Klein Tank AMG., Konnen GP. Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 2003; 23: 679–692. https://doi.org/10.1002/joc.906
  • Yerdelen C. Investigation of trend analysis and change point detection for annual mean streamflows of Susurluk Basin. Dokuz Eylul University Faculty of Engineering Journal of Engineering Sciences 2013; 15(44): 77-87.
  • Yesilirmak E., Akcay S., Dagdelen N., Gurbuz T., Sezgin F. Quality Control and Homogeneity of Annual Precipitation Data in Büyük Menderes Basin, Turkey. International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 29 October - 01 November 2008; pp. 225-233, Aydin.
  • Zaifoglu H., Akintug B., Yanmaz AM. Quality control, homogeneity analysis and trends of extreme precipitation ındices in Northern Cyprus. Journal of Hydrologic Engineering 2017; 22(12): 1–14. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001589
  • Zeybekoglu U., Ulke Keskin A. Detrended fluctuation analyses of rainfall intensities: a case study. International Journal of Global Warming 2020; 21(2): 141-154. https://doi.org/10.1504/IJGW.2020.108175

Homogeneity Analysis of Turkish Rainfall Intensity Series

Year 2022, Volume: 5 Issue: 2, 123 - 137, 31.12.2022
https://doi.org/10.51764/smutgd.1097444

Abstract

In this study, homogeneity checking the annual maximum rainfall intensity series for periods ranging from 30 to 78 years were obtained from 103 stations operated by the Turkish State Meteorological Service. Absolute homogeneity tests namely Standard Normal Homogeneity Test (SNHT), Buishand Range Test (BRT), Pettitt Test (PT), and Von Neumann Ratio Test (VNRT) were applied at a confidence level of 95%. Stations were classified inhomogeneous if at least one of the standard durations data classified suspect or doubtful. Assuming that the factor destabilizing the homogeneity is the trend, a detrended methodology (DFA) was performed. After the implementation of DFA, absolute homogeneity tests were reapplied to the series of rainfall intensity. As a result of this study 49 of 103 stations called useful all 14 standard durations. 45 of the remaining 54 stations classified useful all standard durations after trend components separated from rainfall intensity series. As a result of the analysis, it was determined that the remaining 8 of 103 stations had inhomogeneous values after the trend components were separated.

References

  • Agha OMAM., Bagcaci SC., Sarlak N. Homogeneity analysis of precipitation series in North Iraq. IOSR Journal of Applied Geology and Geophysics 2017; 5(3) Ver. II: 57–63.
  • Ahmed K., Nawaz N., Khan N., Rasheed B., Baloch A. Inhomogeneity detection in the precipitation series: case of arid province of Pakistan. Environment, Development and Sustainability 2021; 23:7176–7192. https://doi.org/10.1007/s10668-020-00910-y
  • Aksu H., Cetin M., Aksoy H., Yaldiz SG., Yildirim I., Keklik G. Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey. Natural Hazards 2022; 111: 2379–2405. https://doi.org/10.1007/s11069-021-05141-6
  • Alexandersson H. A homogeneity test applied to precipitation data. Journal of Climate 1986; 6(6):661–675 https://doi.org/10.1002/joc.3370060607
  • Alexandersson H., Moberg A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology 1997; 17(1): 25-34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
  • Ay M. Trend and homogeneity analysis in temperature and rainfall series in western Black Sea region, Turkey. Theoretical and Applied Climatology 2020; 139: 837–848. https://doi.org/10.1007/s00704-019-03066-6
  • Ay M. Trend tests on maximum rainfall series by a novel approach in the Aegean region, Turkey. and Atmospheric Physics 2021; 133: 1041–1055. https://doi.org/10.1007/s00703-021-00795-0
  • Bickici Arikan B. Prediction of drought ındices based on hydroclimatological data. Istanbul Technical University PhD Thesis, Istanbul, Turkey, 2018.
  • Bickici Arikan B., Kahya E. Homogeneity revisited: analysis of updated precipitation series in Turkey. Theoretical and Applied Climatology 2018; 135(1–2): 1–10. https://doi.org/10.1007/s00704-018-2368-x
  • Buishand TA. The analysis of homogeneity of long-term rainfall records in the Netherlands. The Royal Netherlands Meteorological Institute, 1981
  • Buishand TA. Some methods for testing of rainfall records. Journal of Hydraulics 1982; 58(1-2): 11–27. https://doi.org/10.1016/0022-1694(82)90066-X
  • Conrad V., Pollak C. Methods in climatology. Cambridge: Harvard University Press, 1950.
  • Demir S., Karakaya K., Kavuncu O., Akdoğan, Y. trend analysis of climate parameters of Ordu province and determination of change point. Gaziosmanpasa Journal of Scientific Research 2021; 10(1): 128-141.
  • Em A., Hamidi N., Toprak, ZF. Variation in annual total precipitation and its homegeneous analysis at GAP Region. 1st Turkey Climate Change Congress, 11-13 April 2007, 379-393, Istanbul.
  • Eris E., Agiralioglu N. Homogeneity and trend analysis of hydrometeorological data of the Eastern Black Sea Region, Turkey. Journal of Water Resource and Protection 2012; 4(2): 99-105. https://doi.org/10.4236/jwarp.2012.42012
  • Feng S., Hu Q., Qian W. Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal of Climatology 2004; 24(7): 853–870. https://doi.org/10.1002/joc.1047
  • Firat M., Dikbas F., Koc AC., Gungor M. Missing data analysis and homogeneity test for Turkish precipitation series. Sadhana-Academy Proceedings in Engineering Sciences 2010; 35(6): 707–720. https://doi.org/10.1007/s12046-010-0051-8
  • Gokturk OM., Bozkurt D., Sen OL., Karaca M. Quality control and homogeneity of Turkish precipitation data. Hydrological Processes 2008; 22(16), 3210–3218. https://doi.org/10.1002/hyp.6915
  • Gonzalez-Rouca JF., Jimenez JL., Quesada V., Valero F. Quality control and homogeneity of precipitation data in the Southwest of Europe. Journal of Climate 2001; 14: 964-978. https://doi.org/10.1175/1520-0442(2001)014<0964:QCAHOP>2.0.CO;2
  • Haktanir T., Citakoglu H. Trend, independence, stationarity and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. Journal of Hydrologic Engineering 2014; 19(9): 1–13. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000973
  • Hanssen-Bauer I., Førland J. Homogenizing long Norwegian precipitation series. Journal of Climate 1994; 7: 1001–1013. https://doi.org/10.1175/1520-0442(1994)007<1001:HLNPS>2.0.CO;2
  • Houghton J., Callendar BA., Varney SK., Eds. (1992): Climate Change: The Supplementary Report to the IPCC Scientific Assesment. Cambridge University Press.
  • Jaruskova D. Change-point detection in meteorological measurement. Monthly Weather Review 1996; 124: 1535-1543. https://doi.org/10.1175/1520-0493(1996)124<1535:CPDIMM>2.0.CO;2
  • Kahya E., Cigizoglu HK., Dorum A., Karabork MC., Kömüşcü UA., Cengiz MT., Martı IA., Tarhan M. El Nino ve La Nina Olaylarının Etkileri ile Türkiye’deki Yağış Zaman Serilerinin Karakteristik Özelliklerindeki ve Dağılımlarındaki Değişkenlerin Analizi, YDABAG 102Y146, Research Project. The Scientific and Technological Research Council of Turkey (TUBITAK), Turkey (in Turkish), 2006.
  • Kang HM., Yusof F. Homogeneity tests on daily rainfall series in Peninsular Malaysia. International Journal of Contemporary Mathematical Sciences 2012; 7(1): 9-22.
  • Karabork MC., Kahya E., Komuscu AU. Analysis of Turkish precipitation data homogeneity and the Southern Oscillation forcings on frequency distributions. Hydrological Processes 2007; 21(23): 3203–3210. https://doi.org/10.1002/hyp.6524
  • Khalil A. Inhomogeneity detection in the rainfall series for the Mae Klong River Basin, Thailand. Applied Water Science 2021; 11:147. https://doi.org/10.1007/s13201-021-01474-6
  • Mair A., Fares A. Assessing rainfall data homogeneity and estimating missing records in Mākaha Valley, O‘ahu, Hawai‘i. Journal of Hydrologic Engineering 2010; 15(1): 61-66. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000145 Owen DB. Handbook of Statistical Tables. Addison-Wesley, Reading, Mass: Addison-Wesley Pub. Co., 1962.
  • Peng CK., Buldyrev SV., Havtin S., Simons IM., Stanley HE., Goldberger AL. Mosaic organization of DNA nucleotides. Physical Review E 1994; 49(2): 1685–1689. https://doi.org/10.1103/physreve.49.1685
  • Peng CK., Havlin S., Stanley HE., Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5(1): 82-87. https://doi.org/10.1063/1.166141
  • Peterson, TC., Easterling DR. Creation of homogeneous composite climatological reference series. International Journal of Climatology 1994; 14(6):671-679. https://doi.org/10.1002/joc.3370140606
  • Pettitt AN. A non-parametric approach to the change-point detection. Applied Statistics 1979; 28(2): 126–135. https://doi.org/10.2307/2346729
  • Pirnia A., Golshan M., Darabi H., Adamowski J., Rozbeh S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change 2019; 10(4): 725–742. https://doi.org/10.2166/wcc.2018.162
  • Sahin S. Applying artificial neural networks on determining climate zones and comparison with the Ward’s Method. Istanbul Technical University PhD Thesis, Istanbul, Turkey, 2009.
  • Sahin S., Cigizoglu HK. Homogeneity analysis of Turkish meteorological data set. Hydrological Processes 2010; 24(8): 981–992. https://doi.org/10.1002/hyp.7534
  • Salarijazi M., Akhond AA., Adib A., Daneshkhah A. Trend and change-point detection for the annual stream-flow series of the Karun river at the Ahvaz hydrometric station. African Journal of Agricultural Research 2012 7(32): 4540–4552. https://doi.org/10.5897/AJAR12.650
  • Schonwiese CD., Rapp J. Climate Trend Atlas of Europe Based on Observations 1891–1990. Dordrecht: Kluwer Academic Publishers, 1997.
  • Serra C., Burguen A., Lana X. Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917–1998. International Journal of Climatology 2001; 21(5): 617–636. https://doi.org/10.1002/joc.633
  • Sonmez I. Quality control tests for western Turkey Mesonet. Meteorological Application 2013; 20(3): 330–337. https://doi.org/10.1002/met.1286
  • Suhaila J., Deni SM., Jemain AZ. Detecting inhomogeneity in Peninsular Malaysian rainfall series. Asia-Pacific Journal of the Atmospheric Sciences 2008; 44(4): 369-380.
  • Suhaila J., Yusop Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics 2018; 130(5): 565–581. https://doi.org/10.1007/s00703-017-0537-6
  • Talaee PH., Kouchakzadeh M., Shifteh Some’e B. Homogeneity analysis of precipitation series in Iran. Theoretical and Applied Climatology 2014; 118(1–2): 297–305. https://doi.org/10.1007/s00704-013-1074-y
  • Tayanc M., Dalfes H., Karaca M., Yenigün O. A comparative assessment of different methods for detecting in homogeneities in Turkish temperature data set. International Journal of Climatology 1998; 18(5): 561–578. https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<561::AID-JOC249>3.0.CO;2-Y
  • Tsega M., Tibebe D. Homogeneity tests on rainfall records for selected meteorological stations in Ethiopia. dvanced Journal of Agricultural Research and Reviews 2018; 2(3): 72–78.
  • Turkes M. Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology 1996; 16: 1057–1076. https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<1057::AID-JOC75>3.0.CO;2-D
  • Turkes M. Spatial and temporal variations in precipitation and aridity index series of Turkey. In: Bolle HJJ. (ed.) Mediterranean Climate. Heidelberg: Springer Verlag 2002; 181-213. https://doi.org/10.1007/978-3-642-55657-9_11
  • Turkes M., Sumer UM., Kilic G. Observed changes in maximum and minimum temperatures in Turkey. International Journal of Climatology 1996; 16(4): 463-477. https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<463::AID-JOC13>3.0.CO;2-G
  • Turkes M., Sumer UM., Kilic G. Persistence and periodicity in the precipitation series of Turkey and associations with 500 hPa geopotantial heights. Climate Research 2002; 21: 59-81. https://doi.org/10.3354/cr021059
  • Turkish State Meteorological Service (TSMS). Standart Zamanlardaki Maksimum Yağışlar ve Tekerrür Analizi. Ankara, Turkey. https://mgm.gov.tr/genel/hidrometeoroloji.aspx?s=6 .
  • Von Neumann J. Distribution of the ratio of the mean square successive difference to the variance. Annals of Mathematical Statistics 1941; 13: 367– 395. https://doi.org/10.1214/aoms/1177731677
  • Wijngaard JB., Klein Tank AMG., Konnen GP. Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 2003; 23: 679–692. https://doi.org/10.1002/joc.906
  • Yerdelen C. Investigation of trend analysis and change point detection for annual mean streamflows of Susurluk Basin. Dokuz Eylul University Faculty of Engineering Journal of Engineering Sciences 2013; 15(44): 77-87.
  • Yesilirmak E., Akcay S., Dagdelen N., Gurbuz T., Sezgin F. Quality Control and Homogeneity of Annual Precipitation Data in Büyük Menderes Basin, Turkey. International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 29 October - 01 November 2008; pp. 225-233, Aydin.
  • Zaifoglu H., Akintug B., Yanmaz AM. Quality control, homogeneity analysis and trends of extreme precipitation ındices in Northern Cyprus. Journal of Hydrologic Engineering 2017; 22(12): 1–14. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001589
  • Zeybekoglu U., Ulke Keskin A. Detrended fluctuation analyses of rainfall intensities: a case study. International Journal of Global Warming 2020; 21(2): 141-154. https://doi.org/10.1504/IJGW.2020.108175
There are 55 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Utku Zeybekoğlu 0000-0001-5307-8563

Aslı Ülke Keskin 0000-0002-9676-8377

Publication Date December 31, 2022
Submission Date April 2, 2022
Acceptance Date August 3, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Zeybekoğlu, U., & Ülke Keskin, A. (2022). Homogeneity Analysis of Turkish Rainfall Intensity Series. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 5(2), 123-137. https://doi.org/10.51764/smutgd.1097444

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.