Review
BibTex RIS Cite

Safety Risks and Solution Recommendations for Lithium Ion Batteries

Year 2024, Volume: 7 Issue: 2, 131 - 142, 14.12.2024
https://doi.org/10.51764/smutgd.1511977

Abstract

In this study, the types and causes of failures in lithium-ion batteries are examined and solution suggestions are presented to eliminate the negative conditions or reduce their effects. Accordingly, external faults of the battery are categorized as mechanical, electrical and thermal, and the relationships between these faults are emphasized. Then, the thermal runaway situation that the faults cause to grow and the consequences of this situation were examined. Again, in the light of the reported data on battery-related electric vehicle accidents, the danger dimensions of the malfunctions are discussed. In addition, the latest version of the new generation preventive measures developed against these malfunctions in the literature is mentioned.

References

  • Tran, M.-K.; Akinsanya, M.; Panchal, S.; Fraser, R.; Fowler, (2021).Design of a Hybrid Electric Vehicle Powertrain for Performance Optimization Considering Various Powertrain Components and Configurations. Vehicles , 3, 2. [Google Scholar] [CrossRef]
  • Cunanan, C.; Tran, M.-K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, (2021). M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. , 3, 28 [Google Scholar] [CrossRef]
  • Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A (2020). Review of Battery Fires in Electric Vehicles; Springer: New York, NY, USA,. [CrossRef]
  • Pfrang, A.; Kriston, A.; Ruiz, V.; Lebedeva, N.; Di Persio (2017). F. Safety of Rechargeable Energy Storage Systems with a Focus on Li-Ion Technology; Elsevier Inc.: Amsterdam, The Netherlands,. [CrossRef]
  • Spotnitz, R.; Franklin (2003). Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113, 81–100. [CrossRef]
  • Bandhauer, T.M.; Garimella, S.; Fuller, T.F (2011). A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. , 158, R1–R25 [CrossRef]
  • Wang, Q.; Sun, J.; Yao, X.; Chen, C. (2006). Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc., 153, A329. [CrossRef]
  • Pius Victor Chombo , Yossapong Laoonual (2020). A review of safety strategies of a Li-ion battery, ScienceDirect;; 478, 228649
  • S. Zhang, Q. Zhou, Y. Xia (2015). Influence of mass distribution of battery and occupant on crash response of small lightweight electric vehicle. SAE Technical Paper, 2015-01-0575http://dx.doi.org/10.4271/2015-01-0575.
  • E. Sahraei, R. Hill, T. Wierzbicki (2012). Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity, J. Power Sources 201, 307–321.
  • L. Greve, C. Fehrenbach, (2012). Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells, J. Power Sources 214, 377–385.
  • W.-J. Lai, M.Y. Ali, J. Pan (2014). Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions, J.Power Sources 245, 609–623.
  • M.Y. Ali, W.-J. Lai, J. Pan (2013). Computational models for simulations of lithium-ion battery cells under constrained compression tests, J. Power Sources 242, 325-340
  • E. Sahraei, J. Meier, T. Wierzbicki (2014). Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells, J. Power Sources 247, 503–516.
  • Y. Xia, T. Li, F. Ren, Y. Gao, H. Wang (2014). Failure analysis of pinch–torsion tests as a thermal runaway risk evaluation method of Li-ion cells, J. Power Sources 265, 356–362.
  • H. Maleki, J.N. Howard (2009). Internal short circuit in Li-ion cells, J. Power Sources 191 (2) 568–574.
  • T.G. Zavalis, M. Behm, G. Lindbergh (2012). Investigation of short-circuit scenarios in a lithium-ion battery cell, J. Electrochem. Soc. 159 (6) A848–A859. R.A. Leising, M.J. Palazzo, E.S. Takeuchi, K.J. Takeuchi (2001). Abuse testing of lithiumion batteries: characterization of the overcharge reaction of LiCoO2/graphite cells, J. Electrochem. Soc. 148 (8) A838–A844
  • K. Kitoh, H. Nemoto (1999). 100 Wh Large size Li-ion batteries and safety tests, J. Power Sources 81, 887–890.
  • K. Smith, G.-H. Kim, E. Darcy, A. Pesaran (2010). Thermal/electrical modeling for abusetolerant design of lithium ion modules, Int. J. Energy Res. 34 (2) 204–215.
  • P.G. Balakrishnan, R. Ramesh, T.P. Kumar (2006). Safety mechanisms in lithium-ion batteries, J. Power Sources 155 (2), 401–414.
  • Zhang, L., Zhang Z., Amin H. (2012). Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy & Environmental Science, 5(8): p. 8204-8207.
  • Y. Saito, K. Takano, A. Negishi (2001). Thermal behaviors of lithium-ion cells during overcharge, J. Power Sources 97, 693–696.
  • J. Wen, Y. Yu, C. Chen (2012). A review on lithium-ion batteries safety issues: existing problems and possible solutions, Mater. Express 2 (3), 197–212.
  • C. Lin, Y. Ren, K. Amine, Y. Qin, Z. Chen (2013). In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery, J. Power Sources 230, 32–37.
  • M. Ouyang, D. Ren, L. Lu, J. Li, X. Feng, X. Han, Liu G. (2015). Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/ 3Mn1/3O2+LiyMn2O4 composite cathode, J. Power Sources 279, 626–635.
  • C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, et al. (2006). Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 51 (19) 3872–3883
  • J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, B. Park (2003). A breakthrough in the safety oflithium secondary batteries by coating the cathode material with AlPO4 nanoparticles, Angew. Chem. Int. Ed. 42 (14) 1618–1621.
  • Z. Chen, Y. Qin, K. Amine (2009). Redox shuttles for safer lithium-ion batteries, Electrochim. Acta 54 (24) 5605–5613.
  • J. Lamb, C.J. Orendorff, K. Amine, G. Krumdick, Z. Zhang, L. Zhang, et al. (2014) . Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO4, J. Power Sources 247 1011–1017.
  • L.F. Xiao, X.P. Ai, Y.L. Cao, Y.D. Wang, H.X. Yang (2005). A composite polymer membrane with reversible overcharge protection mechanism for lithium ion batteries, Electrochem. Commun. 7 (6), 589–592.
  • H.F. Li, J.K. Gao, S.L. Zhang (2008). Effect of overdischarge on swelling and recharge performance of lithium ion cells, Chin. J. Chem. 26 (9) 1585–1588.
  • L. Zhang, Y. Ma, X. Cheng, C. Du, T. Guan, Y. Cui, et al. (2015), Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery, J. Power Sources 293, 1006–1015
  • S. Erol, M.E. Orazem, R.P. Muller (2014). Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries, J. Power Sources 270, 92–100.
  • Z. Yu, J. Hu, X. Chu, Q. Liu (2006). Effects of over-discharge on performance of MCMBLiCoO2 lithium-ion battery, Chin. Battery Ind. 11 (4) 223–226 (In Chinese).
  • J. Shu, M. Shui, D. Xu, D. Wang, Y. Ren, S. Gao (2012). A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries, J. Solid State Electr. 16 (2), 819–824.
  • R. Guo, L. Lu, M. Ouyang, X. Feng (2016). Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries, Sci. Rep. 6, 30248.
  • H. Maleki, J.N. Howard (2006). Effects of overdischarge on performance and thermal stability of a Li-ion cell, J. Power Sources 160 (2), 1395–1402
  • Sun, P.; Bisschop, R.; Niu, H.; Huang, X (2020). A Review of Battery Fires in Electric Vehicles; Springer: New York, NY, USA. [CrossRef]
  • Bandhauer, T.M.; Garimella, S.; Fuller, T.F (2011). A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc., 158, R1–R25 [CrossRef]
  • Yang, H.; Zhuang, G.V.; Ross, P.N (2006). Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources, 161, 573–579. [CrossRef]
  • Jhu, C.Y.;Wang, Y.W.;Wen, C.Y.; Shu, C.M. (2012). Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Appl. Energy, 100, 127–131. [CrossRef]
  • Orendor_, C.J.; Lamb, J., Steele, L.A.M., Spangler, S.W, Langendorf, J (2016). Quantification of Lithium-Ion Cell Thermal Runaway Energetics; Sandia Report; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA; p. 0486. [CrossRef]
  • Huang, P.;Wang, Q.; Li, K.; Ping, P.; Sun J. (2015). The combustion behavior of large scale lithium titanate battery. Sci. Rep.; 5, 7788. [CrossRef]
  • Norio Takenaka, Amine Bouibes, Yuki Yamada, Masataka Nagaoka, and Atsuo Yamada (2021). Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism, Advanced Materials, Wiley.
  • Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. (2014). Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources, 255, 294–301. [CrossRef]
  • Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; et al (2015). In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun., 6924. [CrossRef]
  • Mikolajczak, C.; Michael Kahn, P.; White, K.; Thomas Long, R. (2011). Lithium-Ion Batteries Hazard and Use Assessment Final Report; Fire Protection Research Foundation: Quincy, MA, USA. Roth, E.P.; Doughty, D.H.; Franklin, J. (2004). DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J. Power Sources
  • Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C (2012). Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources, 208, 210–224. [CrossRef]
  • Gachot, G.; Ribière, P.; Mathiron, D.; Grugeon, S.; Armand, M.; Leriche, J.B.; Pilard, S.; Laruelle, S. (2011). Gas chromatography/mass spectrometry as a suitable tool for the li-ion battery electrolyte degradation mechanisms study. Anal. Chem., 2011, 83, 478–485.
  • Dongxu Ouyang, Mingyi Chen, QueHuang, JingwenWeng, Zhi Wang and Jian Wang (2019). A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Counter measures, Applied Sciences, 2019, 9,2483
  • A. Mauger, C. M. Julien (2017). Critical review on lithium-ion batteries: are they safe? Sustainable?, Springer, 2017, 1933-1947
  • Rengaswamy Srinivasan, Bliss G. Carkhuff, Michael H. Butler, Andrew C. (2011),BaisdenInstantaneous measurement of the internal temperature in lithium-ion rechargeable cells, Electrochimica Acta,56, 6198-6204.
  • Guangfang Hu, Peifeng Huang, Zhonghao Bai, Qingsong Wang, Kaixuan Qi (2021) Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery, Elsevier eTransportation 10 (2021) 100140
  • Xianjun Liu a , Yanfei Li , Xiaohua Jiang , Kw Xu (2024), Lithium-ion battery of an electric vehicle short circuit caused by electrolyte leakage: A case study and online detection, Elsevier Journal of Energy Storage 97 (2024) 112950
  • Pedro L. (April 4, 2020), Comparison of different EV batteries in 2020 https://pushevs.com/2020/04/04/comparison-of-different-ev-batteries-in-2020/
  • EV Fire Battery Data( July 11. 2024) https://www.evfiresafe.com/ev-battery-fire-data
  • FireSafe (July 11, 2021) Global Electrical Vehicle Battery Fires https://www.evfiresafe.com/ev-fire-faqs

Lityum İyon Bataryaları İçin Güvenlik Riskleri ve Çözüm Önerileri

Year 2024, Volume: 7 Issue: 2, 131 - 142, 14.12.2024
https://doi.org/10.51764/smutgd.1511977

Abstract

Bu çalışmada lityum iyon bataryalarda gerçekleşen arıza türleri ve nedenleri incelenerek olumsuz koşulları ortadan kaldıracak veya etkilerini azaltacak çözüm önerileri sunulmuştur. Buna göre bataryanın harici arızaları mekanik, elektriksel ve termal olarak kategorize edilerek bu arızaların birbiriyle olan ilişkileri üzerinde durulmuştur. Daha sonra arızaların büyüyerek oluşumuna sebep olduğu termal kaçak durumu ve bu durumun sonuçları incelenmiştir. Yine raporlanan batarya kaynaklı elektrikli araçlar kazalarının verileri ışığında arızaların tehlike boyutları ele alınmıştır. Ayrıca bu arızalara karşı geliştirilen yeni nesil önleyici tedbirlerin literatürdeki son haline değinilmiştir

Ethical Statement

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

References

  • Tran, M.-K.; Akinsanya, M.; Panchal, S.; Fraser, R.; Fowler, (2021).Design of a Hybrid Electric Vehicle Powertrain for Performance Optimization Considering Various Powertrain Components and Configurations. Vehicles , 3, 2. [Google Scholar] [CrossRef]
  • Cunanan, C.; Tran, M.-K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, (2021). M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. , 3, 28 [Google Scholar] [CrossRef]
  • Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A (2020). Review of Battery Fires in Electric Vehicles; Springer: New York, NY, USA,. [CrossRef]
  • Pfrang, A.; Kriston, A.; Ruiz, V.; Lebedeva, N.; Di Persio (2017). F. Safety of Rechargeable Energy Storage Systems with a Focus on Li-Ion Technology; Elsevier Inc.: Amsterdam, The Netherlands,. [CrossRef]
  • Spotnitz, R.; Franklin (2003). Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113, 81–100. [CrossRef]
  • Bandhauer, T.M.; Garimella, S.; Fuller, T.F (2011). A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. , 158, R1–R25 [CrossRef]
  • Wang, Q.; Sun, J.; Yao, X.; Chen, C. (2006). Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc., 153, A329. [CrossRef]
  • Pius Victor Chombo , Yossapong Laoonual (2020). A review of safety strategies of a Li-ion battery, ScienceDirect;; 478, 228649
  • S. Zhang, Q. Zhou, Y. Xia (2015). Influence of mass distribution of battery and occupant on crash response of small lightweight electric vehicle. SAE Technical Paper, 2015-01-0575http://dx.doi.org/10.4271/2015-01-0575.
  • E. Sahraei, R. Hill, T. Wierzbicki (2012). Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity, J. Power Sources 201, 307–321.
  • L. Greve, C. Fehrenbach, (2012). Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells, J. Power Sources 214, 377–385.
  • W.-J. Lai, M.Y. Ali, J. Pan (2014). Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions, J.Power Sources 245, 609–623.
  • M.Y. Ali, W.-J. Lai, J. Pan (2013). Computational models for simulations of lithium-ion battery cells under constrained compression tests, J. Power Sources 242, 325-340
  • E. Sahraei, J. Meier, T. Wierzbicki (2014). Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells, J. Power Sources 247, 503–516.
  • Y. Xia, T. Li, F. Ren, Y. Gao, H. Wang (2014). Failure analysis of pinch–torsion tests as a thermal runaway risk evaluation method of Li-ion cells, J. Power Sources 265, 356–362.
  • H. Maleki, J.N. Howard (2009). Internal short circuit in Li-ion cells, J. Power Sources 191 (2) 568–574.
  • T.G. Zavalis, M. Behm, G. Lindbergh (2012). Investigation of short-circuit scenarios in a lithium-ion battery cell, J. Electrochem. Soc. 159 (6) A848–A859. R.A. Leising, M.J. Palazzo, E.S. Takeuchi, K.J. Takeuchi (2001). Abuse testing of lithiumion batteries: characterization of the overcharge reaction of LiCoO2/graphite cells, J. Electrochem. Soc. 148 (8) A838–A844
  • K. Kitoh, H. Nemoto (1999). 100 Wh Large size Li-ion batteries and safety tests, J. Power Sources 81, 887–890.
  • K. Smith, G.-H. Kim, E. Darcy, A. Pesaran (2010). Thermal/electrical modeling for abusetolerant design of lithium ion modules, Int. J. Energy Res. 34 (2) 204–215.
  • P.G. Balakrishnan, R. Ramesh, T.P. Kumar (2006). Safety mechanisms in lithium-ion batteries, J. Power Sources 155 (2), 401–414.
  • Zhang, L., Zhang Z., Amin H. (2012). Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy & Environmental Science, 5(8): p. 8204-8207.
  • Y. Saito, K. Takano, A. Negishi (2001). Thermal behaviors of lithium-ion cells during overcharge, J. Power Sources 97, 693–696.
  • J. Wen, Y. Yu, C. Chen (2012). A review on lithium-ion batteries safety issues: existing problems and possible solutions, Mater. Express 2 (3), 197–212.
  • C. Lin, Y. Ren, K. Amine, Y. Qin, Z. Chen (2013). In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery, J. Power Sources 230, 32–37.
  • M. Ouyang, D. Ren, L. Lu, J. Li, X. Feng, X. Han, Liu G. (2015). Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/ 3Mn1/3O2+LiyMn2O4 composite cathode, J. Power Sources 279, 626–635.
  • C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, et al. (2006). Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 51 (19) 3872–3883
  • J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, B. Park (2003). A breakthrough in the safety oflithium secondary batteries by coating the cathode material with AlPO4 nanoparticles, Angew. Chem. Int. Ed. 42 (14) 1618–1621.
  • Z. Chen, Y. Qin, K. Amine (2009). Redox shuttles for safer lithium-ion batteries, Electrochim. Acta 54 (24) 5605–5613.
  • J. Lamb, C.J. Orendorff, K. Amine, G. Krumdick, Z. Zhang, L. Zhang, et al. (2014) . Thermal and overcharge abuse analysis of a redox shuttle for overcharge protection of LiFePO4, J. Power Sources 247 1011–1017.
  • L.F. Xiao, X.P. Ai, Y.L. Cao, Y.D. Wang, H.X. Yang (2005). A composite polymer membrane with reversible overcharge protection mechanism for lithium ion batteries, Electrochem. Commun. 7 (6), 589–592.
  • H.F. Li, J.K. Gao, S.L. Zhang (2008). Effect of overdischarge on swelling and recharge performance of lithium ion cells, Chin. J. Chem. 26 (9) 1585–1588.
  • L. Zhang, Y. Ma, X. Cheng, C. Du, T. Guan, Y. Cui, et al. (2015), Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery, J. Power Sources 293, 1006–1015
  • S. Erol, M.E. Orazem, R.P. Muller (2014). Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries, J. Power Sources 270, 92–100.
  • Z. Yu, J. Hu, X. Chu, Q. Liu (2006). Effects of over-discharge on performance of MCMBLiCoO2 lithium-ion battery, Chin. Battery Ind. 11 (4) 223–226 (In Chinese).
  • J. Shu, M. Shui, D. Xu, D. Wang, Y. Ren, S. Gao (2012). A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries, J. Solid State Electr. 16 (2), 819–824.
  • R. Guo, L. Lu, M. Ouyang, X. Feng (2016). Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries, Sci. Rep. 6, 30248.
  • H. Maleki, J.N. Howard (2006). Effects of overdischarge on performance and thermal stability of a Li-ion cell, J. Power Sources 160 (2), 1395–1402
  • Sun, P.; Bisschop, R.; Niu, H.; Huang, X (2020). A Review of Battery Fires in Electric Vehicles; Springer: New York, NY, USA. [CrossRef]
  • Bandhauer, T.M.; Garimella, S.; Fuller, T.F (2011). A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc., 158, R1–R25 [CrossRef]
  • Yang, H.; Zhuang, G.V.; Ross, P.N (2006). Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources, 161, 573–579. [CrossRef]
  • Jhu, C.Y.;Wang, Y.W.;Wen, C.Y.; Shu, C.M. (2012). Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Appl. Energy, 100, 127–131. [CrossRef]
  • Orendor_, C.J.; Lamb, J., Steele, L.A.M., Spangler, S.W, Langendorf, J (2016). Quantification of Lithium-Ion Cell Thermal Runaway Energetics; Sandia Report; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA; p. 0486. [CrossRef]
  • Huang, P.;Wang, Q.; Li, K.; Ping, P.; Sun J. (2015). The combustion behavior of large scale lithium titanate battery. Sci. Rep.; 5, 7788. [CrossRef]
  • Norio Takenaka, Amine Bouibes, Yuki Yamada, Masataka Nagaoka, and Atsuo Yamada (2021). Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism, Advanced Materials, Wiley.
  • Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. (2014). Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources, 255, 294–301. [CrossRef]
  • Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; et al (2015). In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun., 6924. [CrossRef]
  • Mikolajczak, C.; Michael Kahn, P.; White, K.; Thomas Long, R. (2011). Lithium-Ion Batteries Hazard and Use Assessment Final Report; Fire Protection Research Foundation: Quincy, MA, USA. Roth, E.P.; Doughty, D.H.; Franklin, J. (2004). DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J. Power Sources
  • Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C (2012). Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources, 208, 210–224. [CrossRef]
  • Gachot, G.; Ribière, P.; Mathiron, D.; Grugeon, S.; Armand, M.; Leriche, J.B.; Pilard, S.; Laruelle, S. (2011). Gas chromatography/mass spectrometry as a suitable tool for the li-ion battery electrolyte degradation mechanisms study. Anal. Chem., 2011, 83, 478–485.
  • Dongxu Ouyang, Mingyi Chen, QueHuang, JingwenWeng, Zhi Wang and Jian Wang (2019). A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Counter measures, Applied Sciences, 2019, 9,2483
  • A. Mauger, C. M. Julien (2017). Critical review on lithium-ion batteries: are they safe? Sustainable?, Springer, 2017, 1933-1947
  • Rengaswamy Srinivasan, Bliss G. Carkhuff, Michael H. Butler, Andrew C. (2011),BaisdenInstantaneous measurement of the internal temperature in lithium-ion rechargeable cells, Electrochimica Acta,56, 6198-6204.
  • Guangfang Hu, Peifeng Huang, Zhonghao Bai, Qingsong Wang, Kaixuan Qi (2021) Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery, Elsevier eTransportation 10 (2021) 100140
  • Xianjun Liu a , Yanfei Li , Xiaohua Jiang , Kw Xu (2024), Lithium-ion battery of an electric vehicle short circuit caused by electrolyte leakage: A case study and online detection, Elsevier Journal of Energy Storage 97 (2024) 112950
  • Pedro L. (April 4, 2020), Comparison of different EV batteries in 2020 https://pushevs.com/2020/04/04/comparison-of-different-ev-batteries-in-2020/
  • EV Fire Battery Data( July 11. 2024) https://www.evfiresafe.com/ev-battery-fire-data
  • FireSafe (July 11, 2021) Global Electrical Vehicle Battery Fires https://www.evfiresafe.com/ev-fire-faqs
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Storage
Journal Section Articles
Authors

Murat Buldu 0009-0004-8005-1007

Serdar Altın 0000-0002-4590-907X

Fatih Bulut 0000-0001-6603-2468

Early Pub Date October 5, 2024
Publication Date December 14, 2024
Submission Date July 7, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Buldu, M., Altın, S., & Bulut, F. (2024). Lityum İyon Bataryaları İçin Güvenlik Riskleri ve Çözüm Önerileri. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 7(2), 131-142. https://doi.org/10.51764/smutgd.1511977

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.