Research Article
BibTex RIS Cite
Year 2023, Volume: 12 Issue: 2, 92 - 101, 21.12.2023
https://doi.org/10.21657/soilst.1408065

Abstract

References

  • Akis, R. (2015). Spatial variability of soil solute and saturated hydraulic conductivity affected by undrained water table conditions. Precision Agriculture, 16, 330–359. https://doi.org/s11119-014-9379-0
  • Alfthan, G., Eurola, M., Ekholm, P., Venalainen, E. R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., Aro, A., & Selenium working group (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements Medicine and Biology, 31, 142-147. https://doi.org/10.1016/ j.jtemb.2014.04.009
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N., Wenzel, W. W., & Rinkbele, J. (2017). Trace element in the soil-plant interface: phytoavailability, translocation, and phytoremediation- A review. Earth-Sciences Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005
  • Araujo, A. M., Lessa, J. H. D., de Lima, F. R. D., Raymundo, J. F., Curi, N., Guilherme, L. R. G., & Lopes, G. (2019). Adsorption of selenite in tropical soils as affected by soil management, ionic strength, and soil properties. Journal of Soil Science & Plant Nutrition, 20, 139–148 (2020). https://doi.org/10.1007/s42729-019-00107-x
  • Aubert, H., & Pinta, M. (1977). Trace elements in soils. Elsevier, Amsterdam.
  • Eswayah, A. S., Smith, T. J., Scheinost, A. C., Hondow, N., & Gardiner, P. H. E. (2017). Microbial transformations of selenite by methane-oxidizing bacteria. Applied Microbiology and Biotechnology, 101(17), 6713-6724. https://doi.org/10.1007/s00253-017-8380-8
  • Fan, J. X., Zeng, Y., & Sun, J. X. (2018). The transformation and migration of selenium in soil under different Eh conditions. Journal of Soil Sediments, 18(9), 2935-2947. https://doi.org/10.1007/s11368-018-1980-9
  • Fan, J. X., & Zhao, G. L. (2018). Sorption characteristics and fraction distribution changes of selenite in soil. Sustainability-Basel, 10(7), 2491. https://doi.org/10.3390/su10072491
  • Fan, J. X., Zhao, G. L., Sun, J. X., Hu, Y., & Wang, T. J. (2019). Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. Science of the Total Environment, 684,476-485. https://doi.org/10.1016/j.scitotenv.2019.05.246
  • Hyun, S., Burns, P. E., Murarka, I., & Lee, L. S. (2006). Selenium (IV) and (VI) sorption by soils surrounding fly ash management facilities. Vadose Zone Journal, 5(4), 1110-1118. http://dx.doi.org/10.2136/vzj2005.0140
  • Johnson, R. A., & Wichern, D.W. (2002). Applied multivariete analysis. Prentice-Hall, Inc., New Jersey.
  • Kacar, B. (2009). Soil analysis. Nobel Academic Press, Ankara, Turkey (in Turkish).
  • Keskin, S., & Ozsoy, A. N. (2004). Kanonik korelasyon analizi ve bir uygulaması. Tarım Bilimleri Dergisi, 10(1), 67–71.
  • Korkmaz, H., B. Çetin, I. Ege, A. Karataş, A. Bom, E. Ozsahin. 2011. Environmental effects of stone pits in Hatay (Turkey). Procedia - Social and Behavioral Sciences, 19, 504–510. https://doi.org/10.1016/j.sbspro.2011.05.162
  • Lee, S., Doolittle, J. J., & Woodard, H. J. (2011). Selenite adsorption and desorption in selected South Dakota soils as a function of pH and other oxyanions. Soil Science, 176(2), 73-79. http://dx.doi.org/10.1097/SS.0b013e31820a0ff6
  • Li, Z., Liang, D. Peng, Q., Cui, Z., Huang, J., & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on selenium bioavailability: a review. Geoderma, 295, 69-79. https://doi.org/10.1016/j.geoderma.2017.02.019
  • Lindsay, W.L. (2001). Chemical equilibria in soils. The Blackburn Press, USA.
  • Martens, D. A., & Suares, D.L. (1997). Selenium speciation of soil/sediment determined with sequential extraction and hydride generation atomic absorption spectrophotometry. Science of the Total Environment, 31, 133-139. https://doi.org/10.1021/es960214
  • Mikkelsen, R., Page, A., & Bingham, F. (1989). Factors affecting selenium accumulation by agricultural crops. In L.W. Jacobs (Ed.) Selenium in agriculture and the environment, (pp. 65-94). https://doi.org/10.2136/sssaspecpub23.c4
  • Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., & Leyval, C. (2007). Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Journal of Environmental Radioactivity, 97(2-3),148-158. https://doi.org/10.1016/ j.jenvrad.2007.04.001
  • Navarro-Alarcon, M., & Cabrera-Vique C. (2008). Selenium in food and the human body: a review. Science of the Total Environment, 400, 115–41. https://doi.org/10.1016/ j.scitotenv.2008.06.024
  • Nakamaru, Y. M., & Altansuvd, J. (2014). Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere, 111, 366-371. https://doi.org/10.1016/j.chemosphere.2014.04.024
  • Ören, S., Uygur, V., & Sukuşu, E. (2018) Effect of redox potential induced changes on Fe and Mn availability in soils with differing characteristics. Mediterranean Agricultural Sciences, 31(3), 301-309. https://doi.org/10.29136/mediterranean.409050
  • Ozkan, A., Uygur, V., Sungur, S., & Ozkan, V. (2022). Relationships between physico-chemical properties of the soil and selenium speciations from Amik plain, Turkey, Fresenius Environmental Bulletin, 31, 3805-3818.
  • Ozsoy, A. N. (2019). Egg and chick quality characteristics of meat type japanese quail (coturnix coturnix japonica) line by canonical correlation analysis. Fresenius Environmental Bulletin, 28(4), 2582-2588.
  • Rayman, M. P. (2000). The importance of selenium to human health. Lancet, 356, 233–41. https://doi.org/10.1016/s0140-6736(00)02490-9
  • Reid, M. E., Duffield-Lillico, A. J., Slate, E., Natarajan, N., Turnbull, B., Jacobs, E., et al. (2008). The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutrition and Cancer, 60, 155–63. https://doi.org/10.1080/01635580701684856
  • Saha, U., Fayiga, A., & Sonon, L. (2017). Selenium in the soil-plant environment: A review. International Journal of Applied Agricultural Sciences, 3, 1-18. https://doi.org/ 10.11648/j.ijaas.20170301.11
  • SAS Institute (2002). SAS/STAT user’s guide. Version 9.1, Cary, North Carolina, USA.
  • Sharma, S. (1996). Applied multivariate techniques. John Willey & Sons, Inc., Canada.
  • Shin, K. (1996). SPSS guide for DOS version 5 and windows 6.1.2. 2nd Edition, Irwin, Chicago.
  • Smazikova, P., Praus, L., Szakova, J., Tremlova, J., Hanc A., & Tlustos, P. (2019). Effects of organic matter-rich amendments on selenium mobility in soils. Pedosphere, 29(6), 740–751. https://doi.org/10.1016/S1002-0160(17)60444-2
  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. 2nd ed. Wiley & Sons, New York.
  • Tapiero, H., Townsend D. M., & Tew, K. D. (2003). The antioxidant role of selenium and selenocompounds. Biomedicine & Pharmacotherapy, 57, 134–44. https://doi.org/ 10.1016/s0753-3322(03)00035-0
  • Tolu, J., Thiry, Y., Bueno, M., Jolivet, C., Potin-Gautier, M., & Le Hecho, I. (2014). Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Science of the Total Environment, 479, 93-101. https://doi.org/ 10.1016/j.scitotenv.2014.01.079
  • Usta, S. (1995) Toprak Kimyası. Ankara Üniversitesi Ziraat Fakültesi Yayınları, no: 1387, Ankara.
  • Xing, K., Zhou, S. B., Wu, X. G., Zhu, Y. Y., Kong, J. J., Shao, T., & Tao, X. (2015). Concentrations and characteristics of selenium in soil samples from Dashan Region, a selenium-enriched area in China. Soil Science & Plant Nutrition, 61(6), 889-897. https://doi.org/10.1080/00380768.2015.1075363
  • Xu, Y. F., Li, Y. H., Li, H. R., Wang, L., Liao, X. Y., Wang, J., & Kong, C. (2018). Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Science of the Total Environment, 633, 240-248. https://doi.org/10.1016/j.scitotenv.2018.03.190
  • Wang, D., Xue, M. Y., Wang, Y. K., Zhou, D. Z., Tang, L., Cao, S. Y., Wei, Y. H., Yang, C., & Liang, D. L. (2019). Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. Science of the Total Environment, 657, 871-881. https://doi.org/10.1016/j.scitotenv.2018.12.021
  • White, R. E. (2005). Principles and practice of soil science: The soil as a natural resource. Wiley-Blackwell, New York.
  • Winkel, I.H., Vriens, B., Jones, G.D., Schneider, L.S., Pilon-Smits, E., & Banuelos, G.S. (2015). Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients, 7, 4199-4239. https://doi.org/10.3390%2Fnu7064199

Investigation of the relationships between selenium fractions and soil properties by canonical correlation

Year 2023, Volume: 12 Issue: 2, 92 - 101, 21.12.2023
https://doi.org/10.21657/soilst.1408065

Abstract

The availability and distribution of an element are determined by soil conditions and the geochemical fractions. In this study, canonical correlation (CCA) was used to examine the associations between the soil parameters (X set) of the Amik plain and the fractions of selenium (Se) (Y set). A statistically significant correlation (P < 0.01) of 0.391 ± 0.06 was observed between the first canonical variable pair (FCVP). The clay, sand, and silt variables exhibited the greatest standardized canonical coefficients, with values of 74.55, 75.83, and 94.77, respectively. Additionally, the B3 percent had a standardized canonical coefficient of 1.029. The analysis of the FCVP showed that the original variables of the X set and/or its canonical variable (U1) had the strongest linear connection (0.770) with organic matter (OM) and the B3 percentage in the Y set (0.603). The OM (0.3012) exhibited the most substantial linear structural correlations between the canonical variables of the Y set and the original variables of the X set. However, the canonical redundancy analysis revealed that in the FCVP, the variance of the X set was described by its canonical variables to the extent of 20.97%, whereas the Y set was explained by 21.96%. Hence, it can be inferred that the use of canonical correlation is effective in elucidating the relationship between soil parameters and various components of plant nutrition.

References

  • Akis, R. (2015). Spatial variability of soil solute and saturated hydraulic conductivity affected by undrained water table conditions. Precision Agriculture, 16, 330–359. https://doi.org/s11119-014-9379-0
  • Alfthan, G., Eurola, M., Ekholm, P., Venalainen, E. R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., Aro, A., & Selenium working group (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements Medicine and Biology, 31, 142-147. https://doi.org/10.1016/ j.jtemb.2014.04.009
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N., Wenzel, W. W., & Rinkbele, J. (2017). Trace element in the soil-plant interface: phytoavailability, translocation, and phytoremediation- A review. Earth-Sciences Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005
  • Araujo, A. M., Lessa, J. H. D., de Lima, F. R. D., Raymundo, J. F., Curi, N., Guilherme, L. R. G., & Lopes, G. (2019). Adsorption of selenite in tropical soils as affected by soil management, ionic strength, and soil properties. Journal of Soil Science & Plant Nutrition, 20, 139–148 (2020). https://doi.org/10.1007/s42729-019-00107-x
  • Aubert, H., & Pinta, M. (1977). Trace elements in soils. Elsevier, Amsterdam.
  • Eswayah, A. S., Smith, T. J., Scheinost, A. C., Hondow, N., & Gardiner, P. H. E. (2017). Microbial transformations of selenite by methane-oxidizing bacteria. Applied Microbiology and Biotechnology, 101(17), 6713-6724. https://doi.org/10.1007/s00253-017-8380-8
  • Fan, J. X., Zeng, Y., & Sun, J. X. (2018). The transformation and migration of selenium in soil under different Eh conditions. Journal of Soil Sediments, 18(9), 2935-2947. https://doi.org/10.1007/s11368-018-1980-9
  • Fan, J. X., & Zhao, G. L. (2018). Sorption characteristics and fraction distribution changes of selenite in soil. Sustainability-Basel, 10(7), 2491. https://doi.org/10.3390/su10072491
  • Fan, J. X., Zhao, G. L., Sun, J. X., Hu, Y., & Wang, T. J. (2019). Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. Science of the Total Environment, 684,476-485. https://doi.org/10.1016/j.scitotenv.2019.05.246
  • Hyun, S., Burns, P. E., Murarka, I., & Lee, L. S. (2006). Selenium (IV) and (VI) sorption by soils surrounding fly ash management facilities. Vadose Zone Journal, 5(4), 1110-1118. http://dx.doi.org/10.2136/vzj2005.0140
  • Johnson, R. A., & Wichern, D.W. (2002). Applied multivariete analysis. Prentice-Hall, Inc., New Jersey.
  • Kacar, B. (2009). Soil analysis. Nobel Academic Press, Ankara, Turkey (in Turkish).
  • Keskin, S., & Ozsoy, A. N. (2004). Kanonik korelasyon analizi ve bir uygulaması. Tarım Bilimleri Dergisi, 10(1), 67–71.
  • Korkmaz, H., B. Çetin, I. Ege, A. Karataş, A. Bom, E. Ozsahin. 2011. Environmental effects of stone pits in Hatay (Turkey). Procedia - Social and Behavioral Sciences, 19, 504–510. https://doi.org/10.1016/j.sbspro.2011.05.162
  • Lee, S., Doolittle, J. J., & Woodard, H. J. (2011). Selenite adsorption and desorption in selected South Dakota soils as a function of pH and other oxyanions. Soil Science, 176(2), 73-79. http://dx.doi.org/10.1097/SS.0b013e31820a0ff6
  • Li, Z., Liang, D. Peng, Q., Cui, Z., Huang, J., & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on selenium bioavailability: a review. Geoderma, 295, 69-79. https://doi.org/10.1016/j.geoderma.2017.02.019
  • Lindsay, W.L. (2001). Chemical equilibria in soils. The Blackburn Press, USA.
  • Martens, D. A., & Suares, D.L. (1997). Selenium speciation of soil/sediment determined with sequential extraction and hydride generation atomic absorption spectrophotometry. Science of the Total Environment, 31, 133-139. https://doi.org/10.1021/es960214
  • Mikkelsen, R., Page, A., & Bingham, F. (1989). Factors affecting selenium accumulation by agricultural crops. In L.W. Jacobs (Ed.) Selenium in agriculture and the environment, (pp. 65-94). https://doi.org/10.2136/sssaspecpub23.c4
  • Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., & Leyval, C. (2007). Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Journal of Environmental Radioactivity, 97(2-3),148-158. https://doi.org/10.1016/ j.jenvrad.2007.04.001
  • Navarro-Alarcon, M., & Cabrera-Vique C. (2008). Selenium in food and the human body: a review. Science of the Total Environment, 400, 115–41. https://doi.org/10.1016/ j.scitotenv.2008.06.024
  • Nakamaru, Y. M., & Altansuvd, J. (2014). Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere, 111, 366-371. https://doi.org/10.1016/j.chemosphere.2014.04.024
  • Ören, S., Uygur, V., & Sukuşu, E. (2018) Effect of redox potential induced changes on Fe and Mn availability in soils with differing characteristics. Mediterranean Agricultural Sciences, 31(3), 301-309. https://doi.org/10.29136/mediterranean.409050
  • Ozkan, A., Uygur, V., Sungur, S., & Ozkan, V. (2022). Relationships between physico-chemical properties of the soil and selenium speciations from Amik plain, Turkey, Fresenius Environmental Bulletin, 31, 3805-3818.
  • Ozsoy, A. N. (2019). Egg and chick quality characteristics of meat type japanese quail (coturnix coturnix japonica) line by canonical correlation analysis. Fresenius Environmental Bulletin, 28(4), 2582-2588.
  • Rayman, M. P. (2000). The importance of selenium to human health. Lancet, 356, 233–41. https://doi.org/10.1016/s0140-6736(00)02490-9
  • Reid, M. E., Duffield-Lillico, A. J., Slate, E., Natarajan, N., Turnbull, B., Jacobs, E., et al. (2008). The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutrition and Cancer, 60, 155–63. https://doi.org/10.1080/01635580701684856
  • Saha, U., Fayiga, A., & Sonon, L. (2017). Selenium in the soil-plant environment: A review. International Journal of Applied Agricultural Sciences, 3, 1-18. https://doi.org/ 10.11648/j.ijaas.20170301.11
  • SAS Institute (2002). SAS/STAT user’s guide. Version 9.1, Cary, North Carolina, USA.
  • Sharma, S. (1996). Applied multivariate techniques. John Willey & Sons, Inc., Canada.
  • Shin, K. (1996). SPSS guide for DOS version 5 and windows 6.1.2. 2nd Edition, Irwin, Chicago.
  • Smazikova, P., Praus, L., Szakova, J., Tremlova, J., Hanc A., & Tlustos, P. (2019). Effects of organic matter-rich amendments on selenium mobility in soils. Pedosphere, 29(6), 740–751. https://doi.org/10.1016/S1002-0160(17)60444-2
  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. 2nd ed. Wiley & Sons, New York.
  • Tapiero, H., Townsend D. M., & Tew, K. D. (2003). The antioxidant role of selenium and selenocompounds. Biomedicine & Pharmacotherapy, 57, 134–44. https://doi.org/ 10.1016/s0753-3322(03)00035-0
  • Tolu, J., Thiry, Y., Bueno, M., Jolivet, C., Potin-Gautier, M., & Le Hecho, I. (2014). Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Science of the Total Environment, 479, 93-101. https://doi.org/ 10.1016/j.scitotenv.2014.01.079
  • Usta, S. (1995) Toprak Kimyası. Ankara Üniversitesi Ziraat Fakültesi Yayınları, no: 1387, Ankara.
  • Xing, K., Zhou, S. B., Wu, X. G., Zhu, Y. Y., Kong, J. J., Shao, T., & Tao, X. (2015). Concentrations and characteristics of selenium in soil samples from Dashan Region, a selenium-enriched area in China. Soil Science & Plant Nutrition, 61(6), 889-897. https://doi.org/10.1080/00380768.2015.1075363
  • Xu, Y. F., Li, Y. H., Li, H. R., Wang, L., Liao, X. Y., Wang, J., & Kong, C. (2018). Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Science of the Total Environment, 633, 240-248. https://doi.org/10.1016/j.scitotenv.2018.03.190
  • Wang, D., Xue, M. Y., Wang, Y. K., Zhou, D. Z., Tang, L., Cao, S. Y., Wei, Y. H., Yang, C., & Liang, D. L. (2019). Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. Science of the Total Environment, 657, 871-881. https://doi.org/10.1016/j.scitotenv.2018.12.021
  • White, R. E. (2005). Principles and practice of soil science: The soil as a natural resource. Wiley-Blackwell, New York.
  • Winkel, I.H., Vriens, B., Jones, G.D., Schneider, L.S., Pilon-Smits, E., & Banuelos, G.S. (2015). Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients, 7, 4199-4239. https://doi.org/10.3390%2Fnu7064199
There are 41 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Abdullah Özkan 0000-0002-6799-2396

Abdullah Nuri Özsoy 0000-0002-6278-0765

Veli Uygur 0000-0003-3971-7714

Publication Date December 21, 2023
Submission Date October 20, 2023
Acceptance Date November 8, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Özkan, A., Özsoy, A. N., & Uygur, V. (2023). Investigation of the relationships between selenium fractions and soil properties by canonical correlation. Soil Studies, 12(2), 92-101. https://doi.org/10.21657/soilst.1408065