Research Article
BibTex RIS Cite

Türkiye’de Yatırım Teşviklerinin Bölgesel Gelişmişlik Farklarını Azaltma Konusunda Etkinliği

Year 2024, , 129 - 150, 31.01.2024
https://doi.org/10.17233/sosyoekonomi.2024.01.06

Abstract

Bu çalışmada, Türkiye’de uygulanan yatırım teşvik sisteminin bölgesel gelişmişlik farklarını azaltmada ne ölçüde etkili olduğunun tespit edilmesi amaçlanmaktadır. Bu doğrultuda, 2001-2022 yılları arasında verilen 100.000’den fazla yatırım teşvik belgesi incelenmiştir. Kriterlerin önem düzeyinin belirlenmesi ve illerin yatırım performanslarının sıralanması amacıyla Logarithm Methodology of Additive Weights (LMAW) yönteminden yararlanılmıştır. Elde edilen sonuçlar, yatırım teşvik uygulamalarının bölgesel gelişmişlik farklarını azaltma noktasında yeterli etkinlik sağlayamadığını göstermektedir. Bu açıdan, halihazırda uygulanan teşvik politikalarında ciddi bir revizyon gereksinimi olduğu görülmektedir.

Supporting Institution

TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU (TÜBİTAK)

Project Number

222K168

References

  • Asadi, M. et al. (2023), “The appropriation of blockchain implementation in the supply chain of SMEs based on fuzzy LMAW”, Engineering Applications of Artificial Intelligence, 123, 106169.
  • Božanić, D. et al. (2021), “Modeling of Neuro-Fuzzy System as a Support in Decision-Making Processes”, Reports in Mechanical Engineering, 2(1), 222-234.
  • Božanić, D. et al. (2022), “Modification of the Logarithm Methodology of Additive Weights (LMAW) by a Triangular Fuzzy Number and Its Application in Multi-Criteria Decision Making”, Axioms, 11(3), 89.
  • Candan, G.T. & V. Yurdadoğ (2017), “Incentive Policies as Fiscal Policy Instruments in Turkey”, Pamukkale University Journal of Social Sciences Institute, 27, 154-177.
  • Demir, G. (2022), “Analysis of the Financial Performance of the Deposit Banking Sector in The COVID-19 Period with LMAW-DNMA Methods”, International Journal of Insurance and Finance, 2(2), 17-36.
  • Dündar, S. (2019), “Yatırımlarda Devlet Yardımları ve Sivas Yansımaları”, in: İ. Noyan-Yalman (ed.), Sivas Ekonomisi-Geçmişi, Bugünü, Geleceği (349-368), Sivas Vilayet Kitaplığı.
  • Dündar, S. (2023), “Performance Analysis of Regional Development Agencies by LMAW-DNMA Methods”, Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 18(2), 354-380.
  • Erdoğan, E. & R. Ataklı (2012), “Investment Incentives and FDI in Turkey: The Incentives Package after the 2008 Global Crisis”, Procedia - Social and Behavioral Sciences, 58, 1183-1192.
  • Ghorabaee, M.K. et al. (2015), “Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS)”, Informatica, 26(3), 435-451.
  • Gigović, L. et al. (2016), “The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots”, Sustainability, 8(4), 372.
  • Görçün, Ö.F. & H. Küçükönder (2022), “Evaluation of The Transitions Potential to Cyber-Physical Production System of Heavy Industries in Turkey with A Novel Decision-Making Approach Based On Bonferroni Function”, Verimlilik Dergisi, (Dijital Dönüşüm ve Verimlilik Özel Sayısı), 1-16.
  • Hafezalkotob, A. & A. Hafezalkotob (2015), “Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications”, Materials & Design, 87, 949-959.
  • Hazman, G.G. & P.B. Kaya (2018), “Bölgesel Teşvik Uygulamaları ile İhracat İlişkisinin Afyonkarahisar İli Örneğinde Regresyon Analizi ile Değerlendirilmesi”, Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 5(5), 42-57.
  • Keeney, R.L. et al. (1979), “Decisions with Multiple Objectives: Preferences and Value Trade-Offs”, IEEE Transactions on Systems, Man, and Cybernetics, 9(7), 403.
  • Liao, H. & X. Wu (2020), “DNMA: A Double Normalization-Based Multiple Aggregation Method for Multi-Expert Multi-Criteria Decision Making”, Omega, 94(3), 102058.
  • Lukic, R. (2023), “Measurement and Analysis of The Information Performance of Companies in The European Union and Serbia Based on The Fuzzy LMAW and MARCOS Methods”, Informatica Economică, 27(1), 17-31.
  • Pamucar, D. & G. Ćirović (2015), “The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)”, Expert Systems with Applications, 42(6), 3016-3028.
  • Pamucar, D. et al. (2021), “A New Logarithm Methodology of Additive Weights (LMAW) for Multi-Criteria Decision-Making: Application in Logistics”, Facta Universitatis Series Mechanical Engineering, 19(3), 361-380.
  • Puška, A. et al. (2022a), “Green Supplier Selection in an Uncertain Environment in Agriculture Using a Hybrid MCDM Model: Z-Numbers-Fuzzy LMAW-Fuzzy CRADIS Model”, Axioms, 11(9), 427.
  • Puška, A. et al. (2022b), “Evaluation and Selection of Healthcare Waste Incinerators Using Extended Sustainability Criteria and Multi-Criteria Analysis Methods”, Environment, Development and Sustainability, 24(9), 11195-11225.
  • Şahin, M.Y. & H. Kaplan (2021), Dönüşüm Sürecinde Yatırım Teşviklerinin Dünü ve Bugünü, Ankara, Türkiye: TOBB Yayınları.
  • Seli̇m, S. et al. (2014), “Effect on Employment of the Investment Incentives and Fixed Investments in Turkey: Panel Data Analysis”, Ege Academic Review, 14(4), 661-674.
  • Sıcakyüz, Ç. (2023), “Analyzing Healthcare and Wellness Products’ Quality Embedded in Online Customer Reviews: Assessment with a Hybrid Fuzzy LMAW and Fermatean Fuzzy WASPAS Method”, Sustainability, 15(4), 3428.
  • Subotić, M. et al. (2021), “Development of a New Risk Assessment Methodology for Light Goods Vehicles on Two-Lane Road Sections”, Symmetry, 13(7), 1271.
  • Sungur, O. (2019), “Spatial Distribution of Investment Incentives and the Impact of New Incentive System for Less Developed Regions in Turkey”, Review of Economic Perspectives, 19, 25-48.
  • Tešić, D. et al. (2023), “Development of the MCDM Fuzzy LMAW - Grey MARCOS Model for Selection of a Dump Truck”, Reports in Mechanical Engineering, 4(1), 1-17.
  • Yanıkkaya, H. & H. Karaboga (2017), “The Effectiveness of Investment Incentives in the Turkish Manufacturing Industry”, Prague Economic Papers, 26(6), 744-760.
  • Yazdani, M. et al. (2018), “A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems”, Management Decision, 57(9), 2501-2519.
  • Zavadskas, E.K. & Z. Turskis (2010), “A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision‐Making”, Technological and Economic Development of Economy, 16(2), 159-172.
  • Žižović, M. et al. (2020), “Eliminating Rank Reversal Problem Using a New Multi-Attribute Model - The RAFSI Method”, Mathematics, 8(6), 1015.

Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye

Year 2024, , 129 - 150, 31.01.2024
https://doi.org/10.17233/sosyoekonomi.2024.01.06

Abstract

This study aims to determine to what extent the investment incentive system implemented in Türkiye effectively reduces regional development disparities. For this purpose, more than 100,000 investment incentive certificates issued between 2001-2022 are examined. The Logarithm Methodology of Additive Weights (LMAW) determines the criteria's importance and ranks the provinces' investment performances. The results obtained indicate that investment incentive applications cannot provide sufficient effectiveness in reducing regional development disparities. In this respect, there is a severe need for revision in the incentive policies currently implemented.

Project Number

222K168

References

  • Asadi, M. et al. (2023), “The appropriation of blockchain implementation in the supply chain of SMEs based on fuzzy LMAW”, Engineering Applications of Artificial Intelligence, 123, 106169.
  • Božanić, D. et al. (2021), “Modeling of Neuro-Fuzzy System as a Support in Decision-Making Processes”, Reports in Mechanical Engineering, 2(1), 222-234.
  • Božanić, D. et al. (2022), “Modification of the Logarithm Methodology of Additive Weights (LMAW) by a Triangular Fuzzy Number and Its Application in Multi-Criteria Decision Making”, Axioms, 11(3), 89.
  • Candan, G.T. & V. Yurdadoğ (2017), “Incentive Policies as Fiscal Policy Instruments in Turkey”, Pamukkale University Journal of Social Sciences Institute, 27, 154-177.
  • Demir, G. (2022), “Analysis of the Financial Performance of the Deposit Banking Sector in The COVID-19 Period with LMAW-DNMA Methods”, International Journal of Insurance and Finance, 2(2), 17-36.
  • Dündar, S. (2019), “Yatırımlarda Devlet Yardımları ve Sivas Yansımaları”, in: İ. Noyan-Yalman (ed.), Sivas Ekonomisi-Geçmişi, Bugünü, Geleceği (349-368), Sivas Vilayet Kitaplığı.
  • Dündar, S. (2023), “Performance Analysis of Regional Development Agencies by LMAW-DNMA Methods”, Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 18(2), 354-380.
  • Erdoğan, E. & R. Ataklı (2012), “Investment Incentives and FDI in Turkey: The Incentives Package after the 2008 Global Crisis”, Procedia - Social and Behavioral Sciences, 58, 1183-1192.
  • Ghorabaee, M.K. et al. (2015), “Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS)”, Informatica, 26(3), 435-451.
  • Gigović, L. et al. (2016), “The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots”, Sustainability, 8(4), 372.
  • Görçün, Ö.F. & H. Küçükönder (2022), “Evaluation of The Transitions Potential to Cyber-Physical Production System of Heavy Industries in Turkey with A Novel Decision-Making Approach Based On Bonferroni Function”, Verimlilik Dergisi, (Dijital Dönüşüm ve Verimlilik Özel Sayısı), 1-16.
  • Hafezalkotob, A. & A. Hafezalkotob (2015), “Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications”, Materials & Design, 87, 949-959.
  • Hazman, G.G. & P.B. Kaya (2018), “Bölgesel Teşvik Uygulamaları ile İhracat İlişkisinin Afyonkarahisar İli Örneğinde Regresyon Analizi ile Değerlendirilmesi”, Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 5(5), 42-57.
  • Keeney, R.L. et al. (1979), “Decisions with Multiple Objectives: Preferences and Value Trade-Offs”, IEEE Transactions on Systems, Man, and Cybernetics, 9(7), 403.
  • Liao, H. & X. Wu (2020), “DNMA: A Double Normalization-Based Multiple Aggregation Method for Multi-Expert Multi-Criteria Decision Making”, Omega, 94(3), 102058.
  • Lukic, R. (2023), “Measurement and Analysis of The Information Performance of Companies in The European Union and Serbia Based on The Fuzzy LMAW and MARCOS Methods”, Informatica Economică, 27(1), 17-31.
  • Pamucar, D. & G. Ćirović (2015), “The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)”, Expert Systems with Applications, 42(6), 3016-3028.
  • Pamucar, D. et al. (2021), “A New Logarithm Methodology of Additive Weights (LMAW) for Multi-Criteria Decision-Making: Application in Logistics”, Facta Universitatis Series Mechanical Engineering, 19(3), 361-380.
  • Puška, A. et al. (2022a), “Green Supplier Selection in an Uncertain Environment in Agriculture Using a Hybrid MCDM Model: Z-Numbers-Fuzzy LMAW-Fuzzy CRADIS Model”, Axioms, 11(9), 427.
  • Puška, A. et al. (2022b), “Evaluation and Selection of Healthcare Waste Incinerators Using Extended Sustainability Criteria and Multi-Criteria Analysis Methods”, Environment, Development and Sustainability, 24(9), 11195-11225.
  • Şahin, M.Y. & H. Kaplan (2021), Dönüşüm Sürecinde Yatırım Teşviklerinin Dünü ve Bugünü, Ankara, Türkiye: TOBB Yayınları.
  • Seli̇m, S. et al. (2014), “Effect on Employment of the Investment Incentives and Fixed Investments in Turkey: Panel Data Analysis”, Ege Academic Review, 14(4), 661-674.
  • Sıcakyüz, Ç. (2023), “Analyzing Healthcare and Wellness Products’ Quality Embedded in Online Customer Reviews: Assessment with a Hybrid Fuzzy LMAW and Fermatean Fuzzy WASPAS Method”, Sustainability, 15(4), 3428.
  • Subotić, M. et al. (2021), “Development of a New Risk Assessment Methodology for Light Goods Vehicles on Two-Lane Road Sections”, Symmetry, 13(7), 1271.
  • Sungur, O. (2019), “Spatial Distribution of Investment Incentives and the Impact of New Incentive System for Less Developed Regions in Turkey”, Review of Economic Perspectives, 19, 25-48.
  • Tešić, D. et al. (2023), “Development of the MCDM Fuzzy LMAW - Grey MARCOS Model for Selection of a Dump Truck”, Reports in Mechanical Engineering, 4(1), 1-17.
  • Yanıkkaya, H. & H. Karaboga (2017), “The Effectiveness of Investment Incentives in the Turkish Manufacturing Industry”, Prague Economic Papers, 26(6), 744-760.
  • Yazdani, M. et al. (2018), “A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems”, Management Decision, 57(9), 2501-2519.
  • Zavadskas, E.K. & Z. Turskis (2010), “A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision‐Making”, Technological and Economic Development of Economy, 16(2), 159-172.
  • Žižović, M. et al. (2020), “Eliminating Rank Reversal Problem Using a New Multi-Attribute Model - The RAFSI Method”, Mathematics, 8(6), 1015.
There are 30 citations in total.

Details

Primary Language English
Subjects Regional Economy, Developmental Economy - Micro, Political Economy, Welfare Economics
Journal Section Articles
Authors

Sinan Dündar 0000-0001-8061-3322

Gülay Demir 0000-0002-3916-7639

İlkay Noyan Yalman 0000-0003-2999-5374

Şerife Merve Koşaroğlu 0000-0002-2563-5753

Selçuk Yasin Yıldız 0000-0002-1594-8799

Project Number 222K168
Early Pub Date January 26, 2024
Publication Date January 31, 2024
Submission Date June 26, 2023
Published in Issue Year 2024

Cite

APA Dündar, S., Demir, G., Noyan Yalman, İ., Koşaroğlu, Ş. M., et al. (2024). Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye. Sosyoekonomi, 32(59), 129-150. https://doi.org/10.17233/sosyoekonomi.2024.01.06
AMA Dündar S, Demir G, Noyan Yalman İ, Koşaroğlu ŞM, Yıldız SY. Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye. Sosyoekonomi. January 2024;32(59):129-150. doi:10.17233/sosyoekonomi.2024.01.06
Chicago Dündar, Sinan, Gülay Demir, İlkay Noyan Yalman, Şerife Merve Koşaroğlu, and Selçuk Yasin Yıldız. “Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye”. Sosyoekonomi 32, no. 59 (January 2024): 129-50. https://doi.org/10.17233/sosyoekonomi.2024.01.06.
EndNote Dündar S, Demir G, Noyan Yalman İ, Koşaroğlu ŞM, Yıldız SY (January 1, 2024) Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye. Sosyoekonomi 32 59 129–150.
IEEE S. Dündar, G. Demir, İ. Noyan Yalman, Ş. M. Koşaroğlu, and S. Y. Yıldız, “Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye”, Sosyoekonomi, vol. 32, no. 59, pp. 129–150, 2024, doi: 10.17233/sosyoekonomi.2024.01.06.
ISNAD Dündar, Sinan et al. “Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye”. Sosyoekonomi 32/59 (January 2024), 129-150. https://doi.org/10.17233/sosyoekonomi.2024.01.06.
JAMA Dündar S, Demir G, Noyan Yalman İ, Koşaroğlu ŞM, Yıldız SY. Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye. Sosyoekonomi. 2024;32:129–150.
MLA Dündar, Sinan et al. “Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye”. Sosyoekonomi, vol. 32, no. 59, 2024, pp. 129-50, doi:10.17233/sosyoekonomi.2024.01.06.
Vancouver Dündar S, Demir G, Noyan Yalman İ, Koşaroğlu ŞM, Yıldız SY. Efficiency of Investment Incentives in Reducing Regional Development Disparities in Türkiye. Sosyoekonomi. 2024;32(59):129-50.