Derleme
BibTex RIS Kaynak Göster

MODERN ÇAĞIN ANTİK TAHILLARI: PSÖDOTAHILLAR VE SAĞLIK ÜZERİNE ETKİLERİ

Yıl 2024, Cilt: 5 Sayı: 1, 98 - 116, 29.02.2024

Öz

Bu derleme çalışması psödotahıllardan amarant, kinoa, karabuğday ve chia tohumunun besin ögesi kompozisyonu ve sağlık etkilerinin değerlendirilmesini amaçlamaktadır. “Sıfır açlık” sürdürülebilir kalkınma hedefinin gerçekleştirilmesi ve besin güvencesinin sağlanması için FAO’nun "Geleceğin Akıllı Besinleri" olarak tanımladığı besleyici, iklime dayanıklı ve üretimin düşük olduğu topraklarda büyüme kapasitesi olan psödotahılların ekiminin yaygınlaştırılması önemli bir yaklaşım olabilir. Psödotahıllar gerçek tahıllara alternatif olarak kabul edilir. Kinoa (Chenopodium quinoa Willd), karabuğday (Fagopyrum esculentum Moench.), Amarant (Amarantus spp.) ve chia (Salvia hispanica L.)) psödotahıllara örnektir. Psödotahıllar; amino asitler, antioksidanlar, flavonoidler, polifenoller, mineraller, vitaminler, lignanlar, diyet posası, doymamış yağ asitleri gibi birçok biyoaktif bileşenden zengin besinlerdir. Psödotahıllar besin ögesi ve biyoaktif bileşen içeriği nedeniyle antiinflamatuvar, antikarsinojenik, antimikrobiyal, antioksidan, glutensiz, antidiyabetik, kolestrol düşürücü, immün modülatör, prebiyotik, antihipertansif, antiageing etkiler gösterir.

Kaynakça

  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr, 60 Suppl 4, 240-257. https://doi.org/10.1080/09637480902950597
  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology 21, 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
  • Alwosais, E. Z. M., Al-Ozairi, E., Zafar, T. A., & Alkandari, S. (2021). Chia seed (Salvia hispanica L.) supplementation to the diet of adults with type 2 diabetes improved systolic blood pressure: A randomized controlled trial. Nutr Health, 27(2), 181-189. https://doi.org/10.1177/0260106020981819
  • Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M. W., Hamar, A., Khajehei, F., Graeff-Honninger, S., & Piatti, C. (2020). Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the "golden grain" and socio-economic and environmental aspects of ıts cultivation and marketization. Foods, 9(2). https://doi.org/10.3390/foods9020216
  • Balakrishnan, G., & Schneider, R. G. (2022). The role of amaranth, quinoa, and millets for the development of healthy, sustainable food products-a concise review. Foods, 11(16). https://doi.org/10.3390/foods11162442
  • Barrio, D. A., & Anon, M. C. (2010). Potential antitumor properties of a protein isolate obtained from the seeds of Amaranthus mantegazzianus. European Journal of Nutrition, 49(2), 73-82. https://doi.org/10.1007/s00394-009-0051-9
  • Bekkering, C. S., & Tian, L. (2019). Thinking outside of the cereal box: breeding underutilized (pseudo)cereals for ımproved human nutrition. Front Genet, 10, 1289. https://doi.org/10.3389/fgene.2019.01289
  • Berti, C., Riso, P., Brusamolino, A., & Porrini, M. (2005). Effect on appetite control of minor cereal and pseudocereal products. British Journal of Nutrition, 94(5), 850-858. https://doi.org/10.1079/Bjn20051563
  • Bielecka, J., Markiewicz-Żukowska, R., Puścion-Jakubik, A., Grabia, M., Nowakowski, P., Soroczyńska, J., & Socha, K. (2022). Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients, 14(11), 2342.
  • Bonafaccia, G., Marocchini, M., & Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9-15.
  • Cao, W., Chen, W. J., Suo, Z. R., & Yao, Y. P. (2008). Protective effects of ethanolic extracts of buckwheat groats on DNA damage caused by hydroxyl radicals. Food Research International, 41(9), 924-929. https://doi.org/10.1016/j.foodres.2007.10.014
  • Carnier, M., Silva, F. P., de Miranda, D. A., Hachul, A. C. L., Rischiteli, A. B. S., Neto, N. I. P., Boldarine, V. T., Seelaender, M., do Nascimento, C. M. O., & Oyama, L. M. (2018). Diet supplemented with chia flour did not modified the ınflammatory process and tumor development in wistar rats ınoculated with Walker 256 cells. Nutrition and Cancer-an International Journal, 70(7), 1007-1016. https://doi.org/10.1080/01635581.2018.1502329
  • Chrungoo, N. K., & Chettry, U. (2021). Buckwheat: A critical approach towards assessment of its potential as a super crop. Indian Journal of Genetics and Plant Breeding, 81(1), 1-23.
  • Ciudad-Mulero, M., Fernandez-Ruiz, V., Matallana-Gonzalez, M. C., & Morales, P. (2019). Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv Food Nutr Res, 90, 83-134. https://doi.org/10.1016/bs.afnr.2019.02.002
  • Coelho, M. S., Soares-Freitas, R. A. M., Areas, J. A. G., Gandra, E. A., & Salas-Mellado, M. D. (2018). Peptides from chia present antibacterial activity and ınhibit cholesterol synthesis. Plant foods for human nutrition, 73(2), 101-107. https://doi.org/10.1007/s11130-018-0668-z
  • Czerwonka, M., & Bialek, A. (2023). Fatty acid composition of pseudocereals and seeds used as functional food ıngredients. Life (Basel), 13(1). https://doi.org/10.3390/life13010217
  • da Silva, B. P., Dias, D. M., Moreira, M. E. D., Toledo, R. C. L., da Matta, S. L. P., Della Lucia, C. M., Martino, H. S. D., & Pinheiro-Sant'Ana, H. M. (2016). Chia seed shows good protein quality, hypoglycemic effect and ımproves the lipid profile and liver and ıntestinal morphology of wistar rats. Plant Foods for Human Nutrition, 71(3), 225-230. https://doi.org/10.1007/s11130-016-0543-8
  • FAO. (1996). Declaration on world food security. World Food Summit, FAO, Rome.
  • Farinazzi-Machado, F. M. V., Barbalho, S. M., Oshiiwa, M., Goulart, R., & Pessan, O. (2012). Use of cereal bars with quinoa (Chenopodium quinoa W) to reduce risk factors related to cardiovascular diseases. Ciencia E Tecnologia De Alimentos, 32(2), 239-244. https://doi.org/10.1590/S0101-20612012005000040
  • Fernandez-Martinez, E., Lira-Islas, I. G., Cario-Corts, R., Soria-Jasso, L. E., Perez-Hernandez, E., & Perez-Hernandez, N. (2019). Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. Journal of Food Biochemistry, 43(9). https://doi.org/ARTN e12986 10.1111/jfbc.12986
  • Gabrial, S. G., Shakib, M. R., & Gabrial, G. N. (2016). Effect of pseudocereal-based breakfast meals on the first and second meal glucose tolerance in healthy and diabetic subjects. Open Access Maced J Med Sci, 4(4), 565-573. https://doi.org/10.3889/oamjms.2016.115
  • Gheldof, N., Wang, X. H., & Engeseth, N. J. (2003). Buckwheat honey increases serum antioxidant capacity in humans. Journal of Agricultural and Food Chemistry, 51(5), 1500-1505. https://doi.org/10.1021/jf025897t
  • Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165. https://doi.org/10.1016/j.tifs.2022.04.007
  • Hu, Y. Y., Zhao, Y., Ren, D. Y., Guo, J. J., Luo, Y. Y., & Yang, X. B. (2015). Hypoglycemic and hepatoprotective effects of D-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food & Function, 6(12), 3760-3769. https://doi.org/10.1039/c5fo00612k
  • Hunt, H. V., Shang, X., & Jones, M. K. (2018). Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veg Hist Archaeobot, 27(3), 493-506. https://doi.org/10.1007/s00334-017-0649-4
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72.
  • Jamshidi, A. M., Amato, M., Ahmadi, A., Bochicchio, R., & Rossi, R. (2019). Chia (Salvia hispanica L.) as a novel forage and feed source: A review. Italian Journal of Agronomy, 14(1), 1-18. https://doi.org/10.4081/ija.2019.1297
  • Kabiri, N., Asgary, S., Madani, H., & Mahzouni, P. (2010). Effects of Amaranthus caudatus l. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. Journal of Medicinal Plants Research, 4(5), 355-361. <Go to ISI>://WOS:000275890800002
  • Kayashita, J., Shimaoka, I., Nakajoh, M., Yamazaki, M., & Kato, N. (1997). Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. Journal of Nutrition, 127(7), 1395-1400. https://doi.org/DOI 10.1093/jn/127.7.1395
  • Kim, H. K., Kim, M. J., Cho, H. Y., Kim, E. K., & Shin, D. H. (2006). Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochemistry and Function, 24(3), 195-199. https://doi.org/10.1002/cbf.1210
  • Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508-512. ttps://doi.org/10.1016/j.foodchem.2005.05.081
  • Lan, S. Q., Meng, Y. N., Li, X. P., Zhang, Y. L., Song, G. Y., & Ma, H. J. (2013). Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects. Nutrition Journal, 12. https://doi.org/Artn 6410.1186/1475-2891-12-64
  • Langyan, S., Khan, F. N., & Kumar, A. (2023). Advancement in Nutritional Value, Processing Methods, and Potential Applications of Pseudocereals in Dietary Food: A Review. Food and Bioprocess Technology, 1-20.
  • Leung, E. H., & Ng, T. B. (2007). A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. J Pept Sci, 13(11), 762-767. https://doi.org/10.1002/psc.891
  • Li, Y., Duan, S., Jia, H., Bai, C., Zhang, L., & Wang, Z. (2014). Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochim Biophys Sin (Shanghai), 46(6), 460-470. https://doi.org/10.1093/abbs/gmu023
  • Li, F. H., Zhang, X. L., Li, Y., Lu, K. K., Yin, R., & Ming, J. (2017). Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food & Function, 8(1), 177-188. https://doi.org/10.1039/c6fo01230b
  • Medina-Urrutia, A., Lopez-Uribe, A. R., El Hafidi, M., Gonzalez-Salazar, M. D. C., Posadas-Sanchez, R., Jorge-Galarza, E., Del Valle-Mondragon, L., & Juarez-Rojas, J. G. (2020). Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis, 19(1), 96. https://doi.org/10.1186/s12944-020-01283-x
  • Mlakar, S. G., Turinek, M., Jakop, M., Bavec, M., & Bavec, F. (2009). Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura, 6, 43-53.
  • Morales, D., Miguel, M., & Garces-Rimon, M. (2020). Pseudocereals: a novel source of biologically active peptides. Crit Rev Food Sci Nutr, 61(9), 1537-1544. https://doi.org/10.1080/10408398.2020.1761774
  • Motta, C., Castanheira, I., Gonzales, G. B., Delgado, I., Torres, D., Santos, M., & Matos, A. S. (2019). Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis, 76, 58-65. https://doi.org/10.1016/j.jfca.2018.10.001
  • Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., & Maqsood, S. (2019). Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Lwt-Food Science and Technology, 110, 207-213. https://doi.org/10.1016/j.lwt.2019.04.084
  • Ňorbová, M., Vollmannová, A., Harangozo, Ľ., Franková, H., Čeryová, N., Jančo, I., & Fandrová, A. (2022). Risk Elements, Antioxidant Activity and Polyphenols in Pseudocereal Grains. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(1).
  • Pamela, E. A. I., A. O. Oyeronke, A. G. Michael, O. A. Ayodeji, A. , & O. Solomon, a. M. A. A. (2015). Hepatoprotective effect of Amaranthus hypochondriacus seed extract on sodium arsenite-induced toxicity in male Wistar rats. Journal of Medicinal Plants Research, 9(26), 731–740.
  • Pang, Y. H., Ahmed, S., Xu, Y. J., Beta, T., Zhu, Z. W., Shao, Y. F., & Bao, J. S. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240,212-221.
  • Pasko, P., Zagrodzki, P., Barton, H., Chlopicka, J., & Gorinstein, S. (2010). Effect of quinoa seeds (chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65(4), 333-338. https://doi.org/10.1007/s11130-010-0197-x
  • Pirzadah, T. B., & Malik, B. (2020). Pseudocereals as super foods of 21st century: Recent technological interventions. Journal of Agriculture and Food Research, 2. https://doi.org/10.1016/j.jafr.2020.100052
  • Pourshahidi, L. K., Caballero, E., Osses, A., Hyland, B. W., Ternan, N. G., & Gill, C. I. R. (2020). Modest improvement in CVD risk markers in older adults following quinoa (Chenopodium quinoa Willd.) consumption: a randomized-controlled crossover study with a novel food product. Eur J Nutr, 59(7), 3313-3323. https://doi.org/10.1007/s00394-019-02169-0
  • Ramkisson, S., Dwarka, D., Venter, S., & Mellem, J. J. (2020). In vitro anticancer and antioxidant potential of Amaranthus cruentus protein and its hydrolysates. Food Science and Technology, 40, 634-639. https://doi.org/10.1590/fst.36219
  • Rotondo, R., Ragucci, S., Castaldo, S., Oliva, M. A., Landi, N., Pedone, P. V., Arcella, A., & Di Maro, A. (2021). Cytotoxicity effect of quinoin, type 1 ribosome-ınactivating protein from quinoa seeds, on glioblastoma cells. toxins, 13(10). https://doi.org/ARTN 68410.3390/toxins13100684
  • Saxena, S., L. Shahani, and P. Radee, and P. Bhatnagar. . (2017). Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 273.
  • Shahbaz, M., Raza, N., Islam, M., Imran, M., Ahmad, I., Meyyazhagan, A., Pushparaj, K., Balasubramanian, B., Park, S., Rengasamy, K. R. R., Gondal, T. A., El-Ghorab, A., Abdelgawad, M. A., Ghoneim, M. M., & Wan, C. (2022a). The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise. Crit Rev Food Sci Nutr, 1-13. https://doi.org/10.1080/10408398.2022.2071205
  • Shen, M., Chapman, R. S., He, X. Z., Liu, L. Z., Lai, H., Chen, W., & Lan, Q. (2008). Dietary factors, food contamination and lung cancer risk in Xuanwei, China. Lung Cancer, 61(3), 275-282. https://doi.org/10.1016/j.lungcan.2007.12.024
  • Shin, D. H., Heo, H. J., Lee, Y. J., & Kim, H. K. (2004). Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. British Journal of Biomedical Science, 61(1), 11-14. https://doi.org/Doi 10.1080/09674845.2004.11732639
  • Skrovankova V. D., Mlcek J. (2020). Polyphenols and antioxidant activity in pseudocereals and their products. Potravinarstvo Slovak Journal of Food Sciences, 14, 365-370.
  • Sofi, S. A., Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., Dar, T. A., Mir, S. A., Dar, B. N., & Khaneghah, A. M. (2022). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Science & Nutrition, 1-21. https://doi.org/10.1002/fsn3.3166
  • Tang, Y., Li, X. H., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M. F., Liu, R. H., & Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040
  • Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7). https://doi.org/ARTN 160076710.1002/mnfr.201600767
  • Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and alpha-glucosidase and pancreatic lipase ınhibitory effects. J Agric Food Chem, 64(8), 1712-1719. https://doi.org/10.1021/acs.jafc.5b05761
  • Tenore, G. C., Caruso, D., Buonomo, G., D'Avino, M., Ciampaglia, R., & Novellino, E. (2018). Plasma lipid lowering effect by a novel chia seed based nutraceutical formulation. Journal of Functional Foods, 42, 38-46. https://doi.org/10.1016/j.jff.2018.01.007
  • Thakur, P., Kumar, K., & Dhaliwal, H. S. (2021). Nutritional facts, bioactive components and processing aspects of pseudocereals: A comprehensive review. Food Bioscience,42.https://doi.org/10.1016/j.fbio.2021.101170
  • Tien, N. N. T., Trinh, L. N. D., Inoue, N., Morita, N., & Hung, P. V. (2018). Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan. CEREAL CHEMISTRY, 95(5), 615-624. https://doi.org/10.1002/cche.10069
  • Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M., & Kato, N. (2002). Physicochemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry, 50(7), 2125-2129. https://doi.org/10.1021/jf011248q
  • Türkiye Beslenme Rehberi (TÜBER). (2022). Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Sağlık Bakanlığı Yayın No:1031, Ankara 2022.
  • Türkiye Beslenme ve Sağlık Araştırması (TBSA). (2019). Sağlık Bakanlığı Yayın No: 1132. Ankara 2019.
  • United Nations. (2015). General Assembly Resolution A/RES/70/1. Transforming Our World, the 2030 Agenda for Sustainable Development. https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf. (Erişim Tarihi:12 Haziran 2023)
  • USDA. (2011). National Nutrient Database for Standard Reference Release 28. Basic report 12006, seeds, Chia seeds, dried. https://fdc.nal.usda.gov/fdc-app.html#/food-details/170554/nutrients. (Erişim Tarihi:12 Haziran 2023).
  • Usman, M., Patil, P. J., Mehmood, A., Rehman, A., Shah, H., Haider, J., Xu, K., Zhang, C., & Li, X. (2022). Comparative evaluation of pseudocereal peptides: A review of their nutritional contribution. Trends in Food Science & Technology, 122, 287-313. https://doi.org/10.1016/j.tifs.2022.02.009
  • Vilcacundo, R., Miralles, B., Carrillo, W., & Hernandez-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403-411. https://doi.org/10.1016/j.foodres.2017.11.036
  • Vrancheva, R., Krystev, L., Popova, A., & Mihaylova, D. (2019). Proximate nutritional composition and heat-induced changes of starch in selected grains and seeds. Emirates Journal of Food and Agriculture, 31(9), 718-724. https://doi.org/10.9755/ejfa.2019.v31.i9.2011
  • Wieslander, G., Fabjan, N., Vogrincic, M., Kreft, I., Janson, C., Spetz-Nystrom, U., Vombergar, B., Tagesson, C., Leanderson, P., & Norback, D. (2011). Eating buckwheat cookies ıs associated with the reduction in serum levels of myeloperoxidase and cholesterol: A double blind crossover study in day-care centre staffs. Tohoku Journal of Experimental Medicine, 225(2), 123-130. https://doi.org/10.1620/tjem.225.123
  • Wu, S. C., & Lee, B. H. (2011). Buckwheat Polysaccharide Exerts Antiproliferative Effects in THP-1 Human Leukemia Cells by Inducing Differentiation. Journal of Medicinal Food, 14(1-2), 26-33. https://doi.org/10.1089/jmf.2010.1252
  • Zeashan, H., Amresh, G., Singh, S., & Rao, C. V. (2008). Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food and Chemical Toxicology, 46(11), 3417-3421. https://doi.org/10.1016/j.fct.2008.08.013
  • Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. https://doi.org/10.1016/j.tifs.2018.07.011
  • Zhang CN, Zhang R, Li YM, Liang N, Zhao YM, Zhu HY, et al. (2017). Cholesterol-lowering activity of tartary buckwheat protein. J Agr Food Chem, 65(9):1900-6.
  • Zhu, F. (2019). Proanthocyanidins in cereals and pseudocereals. Critical Reviews in Food Science and Nutrition, 59(10), 1521-1533. https://doi.org/10.1080/10408398.2017.1418284
  • Zhu, F. (2020). Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers, 248. https://doi.org/10.1016/j.carbpol.2020.116819.

Ancient Grains of The Modern Age: Pseudocereals and Its Effects on Health

Yıl 2024, Cilt: 5 Sayı: 1, 98 - 116, 29.02.2024

Öz

The objective of this review is to assess the nutritional value and potential health benefits of the pseudocereals amarant, quinoa, buckwheat, and chia seeds. In order to achieve the "zero hunger" sustainable development goal and to ensure nutritional security, it may be an important approach to expand the cultivation of pseudocereals that are nutritious, climate-resistant and capable of growth in lands with low production, which FAO defines as "Smart Foods of the Future". Pseudocereals are considered an alternative to true grains. Quinoa (Chenopodium quinoa Willd), buckwheat (Fagopyrum esculentum Moench.), Amarant (Amarantus spp.) and chia (Salvia hispanica L.) are examples of pseudocereals. Pseudocereals are rich in many bioactive components such as amino acids, antioxidants, flavonoids, polyphenols, minerals, vitamins, lignans, dietary fiber, unsaturated fatty acids. Pseudocereals have benefits that are anti-inflammatory, anticarcinogenic, antimicrobial, antioxidant, gluten-free, antidiabetic, cholesterol-lowering, immune-modulatory, prebiotic, antihypertensive, and antiaging because of the nutrients and bioactive components they contain.

Kaynakça

  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr, 60 Suppl 4, 240-257. https://doi.org/10.1080/09637480902950597
  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology 21, 106-113. https://doi.org/10.1016/j.tifs.2009.10.014
  • Alwosais, E. Z. M., Al-Ozairi, E., Zafar, T. A., & Alkandari, S. (2021). Chia seed (Salvia hispanica L.) supplementation to the diet of adults with type 2 diabetes improved systolic blood pressure: A randomized controlled trial. Nutr Health, 27(2), 181-189. https://doi.org/10.1177/0260106020981819
  • Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M. W., Hamar, A., Khajehei, F., Graeff-Honninger, S., & Piatti, C. (2020). Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the "golden grain" and socio-economic and environmental aspects of ıts cultivation and marketization. Foods, 9(2). https://doi.org/10.3390/foods9020216
  • Balakrishnan, G., & Schneider, R. G. (2022). The role of amaranth, quinoa, and millets for the development of healthy, sustainable food products-a concise review. Foods, 11(16). https://doi.org/10.3390/foods11162442
  • Barrio, D. A., & Anon, M. C. (2010). Potential antitumor properties of a protein isolate obtained from the seeds of Amaranthus mantegazzianus. European Journal of Nutrition, 49(2), 73-82. https://doi.org/10.1007/s00394-009-0051-9
  • Bekkering, C. S., & Tian, L. (2019). Thinking outside of the cereal box: breeding underutilized (pseudo)cereals for ımproved human nutrition. Front Genet, 10, 1289. https://doi.org/10.3389/fgene.2019.01289
  • Berti, C., Riso, P., Brusamolino, A., & Porrini, M. (2005). Effect on appetite control of minor cereal and pseudocereal products. British Journal of Nutrition, 94(5), 850-858. https://doi.org/10.1079/Bjn20051563
  • Bielecka, J., Markiewicz-Żukowska, R., Puścion-Jakubik, A., Grabia, M., Nowakowski, P., Soroczyńska, J., & Socha, K. (2022). Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients, 14(11), 2342.
  • Bonafaccia, G., Marocchini, M., & Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9-15.
  • Cao, W., Chen, W. J., Suo, Z. R., & Yao, Y. P. (2008). Protective effects of ethanolic extracts of buckwheat groats on DNA damage caused by hydroxyl radicals. Food Research International, 41(9), 924-929. https://doi.org/10.1016/j.foodres.2007.10.014
  • Carnier, M., Silva, F. P., de Miranda, D. A., Hachul, A. C. L., Rischiteli, A. B. S., Neto, N. I. P., Boldarine, V. T., Seelaender, M., do Nascimento, C. M. O., & Oyama, L. M. (2018). Diet supplemented with chia flour did not modified the ınflammatory process and tumor development in wistar rats ınoculated with Walker 256 cells. Nutrition and Cancer-an International Journal, 70(7), 1007-1016. https://doi.org/10.1080/01635581.2018.1502329
  • Chrungoo, N. K., & Chettry, U. (2021). Buckwheat: A critical approach towards assessment of its potential as a super crop. Indian Journal of Genetics and Plant Breeding, 81(1), 1-23.
  • Ciudad-Mulero, M., Fernandez-Ruiz, V., Matallana-Gonzalez, M. C., & Morales, P. (2019). Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv Food Nutr Res, 90, 83-134. https://doi.org/10.1016/bs.afnr.2019.02.002
  • Coelho, M. S., Soares-Freitas, R. A. M., Areas, J. A. G., Gandra, E. A., & Salas-Mellado, M. D. (2018). Peptides from chia present antibacterial activity and ınhibit cholesterol synthesis. Plant foods for human nutrition, 73(2), 101-107. https://doi.org/10.1007/s11130-018-0668-z
  • Czerwonka, M., & Bialek, A. (2023). Fatty acid composition of pseudocereals and seeds used as functional food ıngredients. Life (Basel), 13(1). https://doi.org/10.3390/life13010217
  • da Silva, B. P., Dias, D. M., Moreira, M. E. D., Toledo, R. C. L., da Matta, S. L. P., Della Lucia, C. M., Martino, H. S. D., & Pinheiro-Sant'Ana, H. M. (2016). Chia seed shows good protein quality, hypoglycemic effect and ımproves the lipid profile and liver and ıntestinal morphology of wistar rats. Plant Foods for Human Nutrition, 71(3), 225-230. https://doi.org/10.1007/s11130-016-0543-8
  • FAO. (1996). Declaration on world food security. World Food Summit, FAO, Rome.
  • Farinazzi-Machado, F. M. V., Barbalho, S. M., Oshiiwa, M., Goulart, R., & Pessan, O. (2012). Use of cereal bars with quinoa (Chenopodium quinoa W) to reduce risk factors related to cardiovascular diseases. Ciencia E Tecnologia De Alimentos, 32(2), 239-244. https://doi.org/10.1590/S0101-20612012005000040
  • Fernandez-Martinez, E., Lira-Islas, I. G., Cario-Corts, R., Soria-Jasso, L. E., Perez-Hernandez, E., & Perez-Hernandez, N. (2019). Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. Journal of Food Biochemistry, 43(9). https://doi.org/ARTN e12986 10.1111/jfbc.12986
  • Gabrial, S. G., Shakib, M. R., & Gabrial, G. N. (2016). Effect of pseudocereal-based breakfast meals on the first and second meal glucose tolerance in healthy and diabetic subjects. Open Access Maced J Med Sci, 4(4), 565-573. https://doi.org/10.3889/oamjms.2016.115
  • Gheldof, N., Wang, X. H., & Engeseth, N. J. (2003). Buckwheat honey increases serum antioxidant capacity in humans. Journal of Agricultural and Food Chemistry, 51(5), 1500-1505. https://doi.org/10.1021/jf025897t
  • Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165. https://doi.org/10.1016/j.tifs.2022.04.007
  • Hu, Y. Y., Zhao, Y., Ren, D. Y., Guo, J. J., Luo, Y. Y., & Yang, X. B. (2015). Hypoglycemic and hepatoprotective effects of D-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food & Function, 6(12), 3760-3769. https://doi.org/10.1039/c5fo00612k
  • Hunt, H. V., Shang, X., & Jones, M. K. (2018). Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veg Hist Archaeobot, 27(3), 493-506. https://doi.org/10.1007/s00334-017-0649-4
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72.
  • Jamshidi, A. M., Amato, M., Ahmadi, A., Bochicchio, R., & Rossi, R. (2019). Chia (Salvia hispanica L.) as a novel forage and feed source: A review. Italian Journal of Agronomy, 14(1), 1-18. https://doi.org/10.4081/ija.2019.1297
  • Kabiri, N., Asgary, S., Madani, H., & Mahzouni, P. (2010). Effects of Amaranthus caudatus l. extract and lovastatin on atherosclerosis in hypercholesterolemic rabbits. Journal of Medicinal Plants Research, 4(5), 355-361. <Go to ISI>://WOS:000275890800002
  • Kayashita, J., Shimaoka, I., Nakajoh, M., Yamazaki, M., & Kato, N. (1997). Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-fed rats because of its low digestibility. Journal of Nutrition, 127(7), 1395-1400. https://doi.org/DOI 10.1093/jn/127.7.1395
  • Kim, H. K., Kim, M. J., Cho, H. Y., Kim, E. K., & Shin, D. H. (2006). Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculantus) in streptozotocin-induced diabetic rats. Cell Biochemistry and Function, 24(3), 195-199. https://doi.org/10.1002/cbf.1210
  • Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508-512. ttps://doi.org/10.1016/j.foodchem.2005.05.081
  • Lan, S. Q., Meng, Y. N., Li, X. P., Zhang, Y. L., Song, G. Y., & Ma, H. J. (2013). Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects. Nutrition Journal, 12. https://doi.org/Artn 6410.1186/1475-2891-12-64
  • Langyan, S., Khan, F. N., & Kumar, A. (2023). Advancement in Nutritional Value, Processing Methods, and Potential Applications of Pseudocereals in Dietary Food: A Review. Food and Bioprocess Technology, 1-20.
  • Leung, E. H., & Ng, T. B. (2007). A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. J Pept Sci, 13(11), 762-767. https://doi.org/10.1002/psc.891
  • Li, Y., Duan, S., Jia, H., Bai, C., Zhang, L., & Wang, Z. (2014). Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochim Biophys Sin (Shanghai), 46(6), 460-470. https://doi.org/10.1093/abbs/gmu023
  • Li, F. H., Zhang, X. L., Li, Y., Lu, K. K., Yin, R., & Ming, J. (2017). Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food & Function, 8(1), 177-188. https://doi.org/10.1039/c6fo01230b
  • Medina-Urrutia, A., Lopez-Uribe, A. R., El Hafidi, M., Gonzalez-Salazar, M. D. C., Posadas-Sanchez, R., Jorge-Galarza, E., Del Valle-Mondragon, L., & Juarez-Rojas, J. G. (2020). Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis, 19(1), 96. https://doi.org/10.1186/s12944-020-01283-x
  • Mlakar, S. G., Turinek, M., Jakop, M., Bavec, M., & Bavec, F. (2009). Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura, 6, 43-53.
  • Morales, D., Miguel, M., & Garces-Rimon, M. (2020). Pseudocereals: a novel source of biologically active peptides. Crit Rev Food Sci Nutr, 61(9), 1537-1544. https://doi.org/10.1080/10408398.2020.1761774
  • Motta, C., Castanheira, I., Gonzales, G. B., Delgado, I., Torres, D., Santos, M., & Matos, A. S. (2019). Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. Journal of Food Composition and Analysis, 76, 58-65. https://doi.org/10.1016/j.jfca.2018.10.001
  • Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., & Maqsood, S. (2019). Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. Lwt-Food Science and Technology, 110, 207-213. https://doi.org/10.1016/j.lwt.2019.04.084
  • Ňorbová, M., Vollmannová, A., Harangozo, Ľ., Franková, H., Čeryová, N., Jančo, I., & Fandrová, A. (2022). Risk Elements, Antioxidant Activity and Polyphenols in Pseudocereal Grains. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(1).
  • Pamela, E. A. I., A. O. Oyeronke, A. G. Michael, O. A. Ayodeji, A. , & O. Solomon, a. M. A. A. (2015). Hepatoprotective effect of Amaranthus hypochondriacus seed extract on sodium arsenite-induced toxicity in male Wistar rats. Journal of Medicinal Plants Research, 9(26), 731–740.
  • Pang, Y. H., Ahmed, S., Xu, Y. J., Beta, T., Zhu, Z. W., Shao, Y. F., & Bao, J. S. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240,212-221.
  • Pasko, P., Zagrodzki, P., Barton, H., Chlopicka, J., & Gorinstein, S. (2010). Effect of quinoa seeds (chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65(4), 333-338. https://doi.org/10.1007/s11130-010-0197-x
  • Pirzadah, T. B., & Malik, B. (2020). Pseudocereals as super foods of 21st century: Recent technological interventions. Journal of Agriculture and Food Research, 2. https://doi.org/10.1016/j.jafr.2020.100052
  • Pourshahidi, L. K., Caballero, E., Osses, A., Hyland, B. W., Ternan, N. G., & Gill, C. I. R. (2020). Modest improvement in CVD risk markers in older adults following quinoa (Chenopodium quinoa Willd.) consumption: a randomized-controlled crossover study with a novel food product. Eur J Nutr, 59(7), 3313-3323. https://doi.org/10.1007/s00394-019-02169-0
  • Ramkisson, S., Dwarka, D., Venter, S., & Mellem, J. J. (2020). In vitro anticancer and antioxidant potential of Amaranthus cruentus protein and its hydrolysates. Food Science and Technology, 40, 634-639. https://doi.org/10.1590/fst.36219
  • Rotondo, R., Ragucci, S., Castaldo, S., Oliva, M. A., Landi, N., Pedone, P. V., Arcella, A., & Di Maro, A. (2021). Cytotoxicity effect of quinoin, type 1 ribosome-ınactivating protein from quinoa seeds, on glioblastoma cells. toxins, 13(10). https://doi.org/ARTN 68410.3390/toxins13100684
  • Saxena, S., L. Shahani, and P. Radee, and P. Bhatnagar. . (2017). Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 273.
  • Shahbaz, M., Raza, N., Islam, M., Imran, M., Ahmad, I., Meyyazhagan, A., Pushparaj, K., Balasubramanian, B., Park, S., Rengasamy, K. R. R., Gondal, T. A., El-Ghorab, A., Abdelgawad, M. A., Ghoneim, M. M., & Wan, C. (2022a). The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise. Crit Rev Food Sci Nutr, 1-13. https://doi.org/10.1080/10408398.2022.2071205
  • Shen, M., Chapman, R. S., He, X. Z., Liu, L. Z., Lai, H., Chen, W., & Lan, Q. (2008). Dietary factors, food contamination and lung cancer risk in Xuanwei, China. Lung Cancer, 61(3), 275-282. https://doi.org/10.1016/j.lungcan.2007.12.024
  • Shin, D. H., Heo, H. J., Lee, Y. J., & Kim, H. K. (2004). Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. British Journal of Biomedical Science, 61(1), 11-14. https://doi.org/Doi 10.1080/09674845.2004.11732639
  • Skrovankova V. D., Mlcek J. (2020). Polyphenols and antioxidant activity in pseudocereals and their products. Potravinarstvo Slovak Journal of Food Sciences, 14, 365-370.
  • Sofi, S. A., Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., Dar, T. A., Mir, S. A., Dar, B. N., & Khaneghah, A. M. (2022). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Science & Nutrition, 1-21. https://doi.org/10.1002/fsn3.3166
  • Tang, Y., Li, X. H., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., Marcone, M. F., Liu, R. H., & Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040
  • Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7). https://doi.org/ARTN 160076710.1002/mnfr.201600767
  • Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and alpha-glucosidase and pancreatic lipase ınhibitory effects. J Agric Food Chem, 64(8), 1712-1719. https://doi.org/10.1021/acs.jafc.5b05761
  • Tenore, G. C., Caruso, D., Buonomo, G., D'Avino, M., Ciampaglia, R., & Novellino, E. (2018). Plasma lipid lowering effect by a novel chia seed based nutraceutical formulation. Journal of Functional Foods, 42, 38-46. https://doi.org/10.1016/j.jff.2018.01.007
  • Thakur, P., Kumar, K., & Dhaliwal, H. S. (2021). Nutritional facts, bioactive components and processing aspects of pseudocereals: A comprehensive review. Food Bioscience,42.https://doi.org/10.1016/j.fbio.2021.101170
  • Tien, N. N. T., Trinh, L. N. D., Inoue, N., Morita, N., & Hung, P. V. (2018). Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan. CEREAL CHEMISTRY, 95(5), 615-624. https://doi.org/10.1002/cche.10069
  • Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M., & Kato, N. (2002). Physicochemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry, 50(7), 2125-2129. https://doi.org/10.1021/jf011248q
  • Türkiye Beslenme Rehberi (TÜBER). (2022). Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Sağlık Bakanlığı Yayın No:1031, Ankara 2022.
  • Türkiye Beslenme ve Sağlık Araştırması (TBSA). (2019). Sağlık Bakanlığı Yayın No: 1132. Ankara 2019.
  • United Nations. (2015). General Assembly Resolution A/RES/70/1. Transforming Our World, the 2030 Agenda for Sustainable Development. https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf. (Erişim Tarihi:12 Haziran 2023)
  • USDA. (2011). National Nutrient Database for Standard Reference Release 28. Basic report 12006, seeds, Chia seeds, dried. https://fdc.nal.usda.gov/fdc-app.html#/food-details/170554/nutrients. (Erişim Tarihi:12 Haziran 2023).
  • Usman, M., Patil, P. J., Mehmood, A., Rehman, A., Shah, H., Haider, J., Xu, K., Zhang, C., & Li, X. (2022). Comparative evaluation of pseudocereal peptides: A review of their nutritional contribution. Trends in Food Science & Technology, 122, 287-313. https://doi.org/10.1016/j.tifs.2022.02.009
  • Vilcacundo, R., Miralles, B., Carrillo, W., & Hernandez-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403-411. https://doi.org/10.1016/j.foodres.2017.11.036
  • Vrancheva, R., Krystev, L., Popova, A., & Mihaylova, D. (2019). Proximate nutritional composition and heat-induced changes of starch in selected grains and seeds. Emirates Journal of Food and Agriculture, 31(9), 718-724. https://doi.org/10.9755/ejfa.2019.v31.i9.2011
  • Wieslander, G., Fabjan, N., Vogrincic, M., Kreft, I., Janson, C., Spetz-Nystrom, U., Vombergar, B., Tagesson, C., Leanderson, P., & Norback, D. (2011). Eating buckwheat cookies ıs associated with the reduction in serum levels of myeloperoxidase and cholesterol: A double blind crossover study in day-care centre staffs. Tohoku Journal of Experimental Medicine, 225(2), 123-130. https://doi.org/10.1620/tjem.225.123
  • Wu, S. C., & Lee, B. H. (2011). Buckwheat Polysaccharide Exerts Antiproliferative Effects in THP-1 Human Leukemia Cells by Inducing Differentiation. Journal of Medicinal Food, 14(1-2), 26-33. https://doi.org/10.1089/jmf.2010.1252
  • Zeashan, H., Amresh, G., Singh, S., & Rao, C. V. (2008). Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food and Chemical Toxicology, 46(11), 3417-3421. https://doi.org/10.1016/j.fct.2008.08.013
  • Zettel, V., & Hitzmann, B. (2018). Applications of chia (Salvia hispanica L.) in food products. Trends in Food Science & Technology, 80, 43-50. https://doi.org/10.1016/j.tifs.2018.07.011
  • Zhang CN, Zhang R, Li YM, Liang N, Zhao YM, Zhu HY, et al. (2017). Cholesterol-lowering activity of tartary buckwheat protein. J Agr Food Chem, 65(9):1900-6.
  • Zhu, F. (2019). Proanthocyanidins in cereals and pseudocereals. Critical Reviews in Food Science and Nutrition, 59(10), 1521-1533. https://doi.org/10.1080/10408398.2017.1418284
  • Zhu, F. (2020). Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers, 248. https://doi.org/10.1016/j.carbpol.2020.116819.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme ve Diyetetik
Bölüm Derleme Makaleleri
Yazarlar

Kadriye Elif İmre 0000-0001-6272-8791

Funda Işık 0000-0002-9077-0636

Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 28 Mart 2023
Kabul Tarihi 18 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

APA İmre, K. E., & Işık, F. (2024). MODERN ÇAĞIN ANTİK TAHILLARI: PSÖDOTAHILLAR VE SAĞLIK ÜZERİNE ETKİLERİ. Selçuk Sağlık Dergisi, 5(1), 98-116.