Review
BibTex RIS Cite
Year 2021, Volume: 3 Issue: 1, 22 - 35, 28.02.2021

Abstract

References

  • Abdelaziz, R. M., Abdelazem, A. Z., Hashem, K. S., & Attia, Y. A. (2020). Protective effects of hesperidin against MTX-induced hepatotoxicity in male albino rats. Naunyn-Schmiedeberg’s Archives of Pharmacology. https://doi.org/10.1007/s00210-020-01843-z
  • Ahmed, L. A., Shehata, N. I., Abdelkader, N. F., & Khattab, M. M. (2014). Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0108889
  • Al-Ali, S. Y., Hassan, I. M., & Sadek, S. (2005). Ultrastructural changes in rat livers perfused in vitro and in vivo with a high dose of methotrexate. Histology and Histopathology. https://doi.org/10.14670/HH-20.1131
  • Ali, N., Rashid, S., Nafees, S., Hasan, S. K., Shahid, A., Majed, F., & Sultana, S. (2017). Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chemico-Biological Interactions. https://doi.org/10.1016/j.cbi.2017.05.002
  • Ali, N., Rashid, S., Nafees, S., Hasan, S. K., & Sultana, S. (2014). Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-013-1830-4
  • Bedoui, Y., Guillot, X., Sélambarom, J., Guiraud, P., Giry, C., Jaffar-Bandjee, M. C., Ralandison, S., & Gasque, P. (2019). Methotrexate an old drug with new tricks. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20205023
  • Bu, T., Wang, C., Meng, Q., Huo, X., Sun, H., Sun, P., Zheng, S., Ma, X., Liu, Z., & Liu, K. (2018). Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. European Journal of Pharmacology. https://doi.org/10.1016/j.ejphar.2018.07.031
  • Cassiman, D., Denef, C., Desmet, V. J., & Roskams, T. (2001). Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology. https://doi.org/10.1053/jhep.2001.20793
  • Cetinkaya, A., Bulbuloglu, E., Kurutas, E. B., & Kantarceken, B. (2006). N-acetylcysteine ameliorates methotrexate-induced oxidative liver damage in rats. Medical Science Monitor.
  • Chabner, B. A., Allegra, C. J., Curt, G. A., Clendeninn, N. J., Baram, J., Koizumi, S., Drake, J. C., & Jolivet, J. (1985). Polyglutamation of methotrexate: Is Methotrexate a prodrug? In Journal of Clinical Investigation. https://doi.org/10.1172/JCI112088
  • Chan, E. S. L., & Cronstein, B. N. (2013). Mechanisms of action of methotrexate. Bulletin of the Hospital for Joint Diseases.
  • Conway, R., & Carey, J. J. (2017). Risk of liver disease in methotrexate treated patients. In World Journal of Hepatology. https://doi.org/10.4254/wjh.v9.i26.1092
  • Coskun, A. K., Yigiter, M., Oral, A., Odabasoglu, F., Halici, Z., Mentes, O., Cadirci, E., Atalay, F., & Suleyman, H. (2011). The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture-induced sepsis. TheScientificWorldJournal. https://doi.org/10.1100/tsw.2011.122
  • De Minicis, S., Bataller, R., & Brenner, D. A. (2006). NADPH Oxidase in the Liver: Defensive, Offensive, or Fibrogenic? Gastroenterology. https://doi.org/10.1053/j.gastro.2006.05.048
  • Devrim, E., Çetin, R., Kiliçoǧlu, B., Imge Ergüder, B., Avci, A., & Durak, I. (2005). Methotrexate causes oxidative stress in rat kidney tissues. Renal Failure. https://doi.org/10.1080/08860220500244823
  • Dhokarh, R., Li, G., Schmickl, C. N., Kashyap, R., Assudani, J., Limper, A. H., & Gajic, O. (2012). Drug-associated acute lung injury: A population-based cohort study. Chest. https://doi.org/10.1378/chest.11-2103
  • Famurewa, A. C., Folawiyo, A. M., Enohnyaket, E. B., Azubuike-Osu, S. O., Abi, I., Obaje, S. G., & Famurewa, O. A. (2018). Beneficial role of virgin coconut oil supplementation against acute methotrexate chemotherapy-induced oxidative toxicity and inflammation in rats. Integrative Medicine Research. https://doi.org/10.1016/j.imr.2018.05.001
  • Gilman, A. G. (2018). Goodman & Gilman’s The Pharmacological Basis of Therapeutics Thirteenth Edition. In Mc Graw Hill Education. https://doi.org/10.1017/CBO9781107415324.004
  • Hemeida, R. A. M., & Mohafez, O. M. (2008). Curcumin attenuates methotraxate-induced hepatic oxidative damage in rats. Journal of the Egyptian National Cancer Institute.
  • Hewlings, S., & Kalman, D. (2017). Curcumin: A Review of Its Effects on Human Health. Foods. https://doi.org/10.3390/foods6100092
  • Hoshyar, R., Sebzari, A., Balforoush, M., Valavi, M., & Hosseini, M. (2020). The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. Journal of Complementary and Integrative Medicine. https://doi.org/10.1515/jcim-2019-0201
  • Hosseini, A., Razavi, B. M., & Hosseinzadeh, H. (2018). Saffron (Crocus sativus) petal as a new pharmacological target: A review. In Iranian Journal of Basic Medical Sciences. https://doi.org/10.22038/ijbms.2018.31243.7529
  • Hyoun, S. C., Običan, S. G., & Scialli, A. R. (2012). Teratogen update: Methotrexate. Birth Defects Research Part A - Clinical and Molecular Teratology. https://doi.org/10.1002/bdra.23003
  • Jahovic, N., Çevik, H., Şehirli, A. Ö., Yeǧen, B. Ç., & Şener, G. (2003). Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. Journal of Pineal Research. https://doi.org/10.1034/j.1600-079X.2003.00043.x
  • Koriem, K. M. M., & Soliman, R. E. (2014). Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. Journal of Toxicology. https://doi.org/10.1155/2014/583494
  • Kose, E., Sapmaz, H. I., Sarihan, E., Vardi, N., Turkoz, Y., & Ekinci, N. (2012). Beneficial effects of montelukast against methotrexate-induced liver toxicity: A biochemical and histological study. The Scientific World Journal. https://doi.org/10.1100/2012/987508
  • Leo, M. A., & Lieber, C. S. (1999). Alcohol, vitamin A, and β-carotene: Adverse interactions, including hepatotoxicity and carcinogenicity. In American Journal of Clinical Nutrition. https://doi.org/10.1093/ajcn/69.6.1071
  • Mahmoud, A. M., Germoush, M. O., Al-Anazi, K. M., Mahmoud, A. H., Farah, M. A., & Allam, A. A. (2018). Commiphora molmol protects against methotrexate-induced nephrotoxicity by up-regulating Nrf2/ARE/HO-1 signaling. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2018.06.171
  • Mahmoud, A. M., Hussein, O. E., Hozayen, W. G., Bin-Jumah, M., & Abd El-Twab, S. M. (2020). Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-07532-6
  • Mehrzadi, S., Mehrabani, M., Malayeri, A. R., Bakhshayesh, M., Kalantari, H., & Goudarzi, M. (2019). Ellagic acid as a potential antioxidant, alleviates methotrexate-induced hepatotoxicity in male rats. Acta Chirurgica Belgica. https://doi.org/10.1080/00015458.2018.1455419
  • Naewla, S., Sirichoat, A., Pannangrong, W., Chaisawang, P., Wigmore, P., & Welbat, J. U. (2019). Hesperidin alleviates methotrexate-induced memory deficits via hippocampal neurogenesis in adult rats. Nutrients. https://doi.org/10.3390/NU11040936
  • Olayinka, E., Ore, A., Ola, O., & Adeyemo, O. (2015). Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats. Medical Sciences. https://doi.org/10.3390/medsci3030078
  • Olayinka, E. T., Ore, A., Adeyemo, O. A., & Ola, O. S. (2016). Ameliorative effect of gallic acid on methotrexate-induced hepatotoxicity and nephrotoxicity in rat. Journal of Xenobiotics. https://doi.org/10.4081/xeno.2016.6092
  • Paul F. Morrison, Robert L. Dedrick, and R. J. L. (1987). Methotrexate: Pharmacokinetics and Assessment of Toxicity. In Drinking Water and Health, Volume 8 Pharmacokinetics in Risk Assessment.
  • Pınar, N., Kaplan, M., Özgür, T., & Özcan, O. (2018). Ameliorating effects of tempol on methotrexate-induced liver injury in rats. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2018.03.147
  • Pushpavalli, G., Kalaiarasi, P., Veeramani, C., & Pugalendi, K. V. (2010). Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. European Journal of Pharmacology. https://doi.org/10.1016/j.ejphar.2009.12.031
  • Reiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. In Journal of Pineal Research. https://doi.org/10.1111/jpi.12360
  • Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: Therapeutic potential through its antioxidant property. In Journal of Clinical Biochemistry and Nutrition. https://doi.org/10.3164/jcbn.40.92
  • Tousson, E., Hafez, E., Zaki, S., & Gad, A. (2014). P53, Bcl-2 and CD68 expression in response to amethopterin-induced lung injury and ameliorating role of L-carnitine. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2014.05.007
  • Uz, E., Öktem, F., Yilmaz, H. R., Uzar, E., & Özgüner, F. (2005). The activities of purine-catabolizing enzymes and the level of nitric oxide in rat kidneys subjected to methotrexate: Protective effect of caffeic acid phenethyl ester. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-005-5875-x
  • Vardi, N., Parlakpinar, H., Cetin, A., Erdogan, A., & Ozturk, I. C. (2010). Protective effect of β-carotene on methotrexate-induced oxidative liver damage. Toxicologic Pathology. https://doi.org/10.1177/0192623310367806
  • Zeb, A. (2018). Ellagic acid in suppressing in vivo and in vitro oxidative stresses. In Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-018-3310-3 Zeiny, S. S. (2018). The role of antioxidant (vit-A and glutamine) in ameliorating methotrexate induced hepatic toxicity in rats. Kufa Journal For Veterinary Medical Sciences, 3(1).
  • Zhou, Y. X., Xia, W., Yue, W., Peng, C., Rahman, K., & Zhang, H. (2015). Rhein: A Review of Pharmacological Activities. In Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/578107

Methotrexate Induced Hepatotoxicity and Antioxidants

Year 2021, Volume: 3 Issue: 1, 22 - 35, 28.02.2021

Abstract

Methotrexate (MTX) is an antifolate and antimetabolite group chemotherapeutic agent that has been used in the treatment of many diseases since 1948. MTX treatment has various dose- dependent side effects. The occurrence of these side effects prolongs the treatment process and reduces the success of the treatment. One of the important side effect of MTX treatment is on liver and named as hepatotoxicity. In studies for many years, it has been found that the formation of hepatotoxicity is caused by the disruption of the cellular antioxidant defense mechanism. When the antioxidant defense mechanism is damaged, reactive oxygen radicals increases and causes oxidative damage in hepatocytes. It is thought that antioxidant combination with MTX may reduce these side effects. The purpose of this review is to investigate various antioxidants used to reduce the severity of MTX induced hepatotoxicity.
Key Words: Antioxidant, Hepatotoxicity, Methotrexate

References

  • Abdelaziz, R. M., Abdelazem, A. Z., Hashem, K. S., & Attia, Y. A. (2020). Protective effects of hesperidin against MTX-induced hepatotoxicity in male albino rats. Naunyn-Schmiedeberg’s Archives of Pharmacology. https://doi.org/10.1007/s00210-020-01843-z
  • Ahmed, L. A., Shehata, N. I., Abdelkader, N. F., & Khattab, M. M. (2014). Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0108889
  • Al-Ali, S. Y., Hassan, I. M., & Sadek, S. (2005). Ultrastructural changes in rat livers perfused in vitro and in vivo with a high dose of methotrexate. Histology and Histopathology. https://doi.org/10.14670/HH-20.1131
  • Ali, N., Rashid, S., Nafees, S., Hasan, S. K., Shahid, A., Majed, F., & Sultana, S. (2017). Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chemico-Biological Interactions. https://doi.org/10.1016/j.cbi.2017.05.002
  • Ali, N., Rashid, S., Nafees, S., Hasan, S. K., & Sultana, S. (2014). Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-013-1830-4
  • Bedoui, Y., Guillot, X., Sélambarom, J., Guiraud, P., Giry, C., Jaffar-Bandjee, M. C., Ralandison, S., & Gasque, P. (2019). Methotrexate an old drug with new tricks. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20205023
  • Bu, T., Wang, C., Meng, Q., Huo, X., Sun, H., Sun, P., Zheng, S., Ma, X., Liu, Z., & Liu, K. (2018). Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. European Journal of Pharmacology. https://doi.org/10.1016/j.ejphar.2018.07.031
  • Cassiman, D., Denef, C., Desmet, V. J., & Roskams, T. (2001). Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology. https://doi.org/10.1053/jhep.2001.20793
  • Cetinkaya, A., Bulbuloglu, E., Kurutas, E. B., & Kantarceken, B. (2006). N-acetylcysteine ameliorates methotrexate-induced oxidative liver damage in rats. Medical Science Monitor.
  • Chabner, B. A., Allegra, C. J., Curt, G. A., Clendeninn, N. J., Baram, J., Koizumi, S., Drake, J. C., & Jolivet, J. (1985). Polyglutamation of methotrexate: Is Methotrexate a prodrug? In Journal of Clinical Investigation. https://doi.org/10.1172/JCI112088
  • Chan, E. S. L., & Cronstein, B. N. (2013). Mechanisms of action of methotrexate. Bulletin of the Hospital for Joint Diseases.
  • Conway, R., & Carey, J. J. (2017). Risk of liver disease in methotrexate treated patients. In World Journal of Hepatology. https://doi.org/10.4254/wjh.v9.i26.1092
  • Coskun, A. K., Yigiter, M., Oral, A., Odabasoglu, F., Halici, Z., Mentes, O., Cadirci, E., Atalay, F., & Suleyman, H. (2011). The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture-induced sepsis. TheScientificWorldJournal. https://doi.org/10.1100/tsw.2011.122
  • De Minicis, S., Bataller, R., & Brenner, D. A. (2006). NADPH Oxidase in the Liver: Defensive, Offensive, or Fibrogenic? Gastroenterology. https://doi.org/10.1053/j.gastro.2006.05.048
  • Devrim, E., Çetin, R., Kiliçoǧlu, B., Imge Ergüder, B., Avci, A., & Durak, I. (2005). Methotrexate causes oxidative stress in rat kidney tissues. Renal Failure. https://doi.org/10.1080/08860220500244823
  • Dhokarh, R., Li, G., Schmickl, C. N., Kashyap, R., Assudani, J., Limper, A. H., & Gajic, O. (2012). Drug-associated acute lung injury: A population-based cohort study. Chest. https://doi.org/10.1378/chest.11-2103
  • Famurewa, A. C., Folawiyo, A. M., Enohnyaket, E. B., Azubuike-Osu, S. O., Abi, I., Obaje, S. G., & Famurewa, O. A. (2018). Beneficial role of virgin coconut oil supplementation against acute methotrexate chemotherapy-induced oxidative toxicity and inflammation in rats. Integrative Medicine Research. https://doi.org/10.1016/j.imr.2018.05.001
  • Gilman, A. G. (2018). Goodman & Gilman’s The Pharmacological Basis of Therapeutics Thirteenth Edition. In Mc Graw Hill Education. https://doi.org/10.1017/CBO9781107415324.004
  • Hemeida, R. A. M., & Mohafez, O. M. (2008). Curcumin attenuates methotraxate-induced hepatic oxidative damage in rats. Journal of the Egyptian National Cancer Institute.
  • Hewlings, S., & Kalman, D. (2017). Curcumin: A Review of Its Effects on Human Health. Foods. https://doi.org/10.3390/foods6100092
  • Hoshyar, R., Sebzari, A., Balforoush, M., Valavi, M., & Hosseini, M. (2020). The impact of Crocus sativus stigma against methotrexate-induced liver toxicity in rats. Journal of Complementary and Integrative Medicine. https://doi.org/10.1515/jcim-2019-0201
  • Hosseini, A., Razavi, B. M., & Hosseinzadeh, H. (2018). Saffron (Crocus sativus) petal as a new pharmacological target: A review. In Iranian Journal of Basic Medical Sciences. https://doi.org/10.22038/ijbms.2018.31243.7529
  • Hyoun, S. C., Običan, S. G., & Scialli, A. R. (2012). Teratogen update: Methotrexate. Birth Defects Research Part A - Clinical and Molecular Teratology. https://doi.org/10.1002/bdra.23003
  • Jahovic, N., Çevik, H., Şehirli, A. Ö., Yeǧen, B. Ç., & Şener, G. (2003). Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. Journal of Pineal Research. https://doi.org/10.1034/j.1600-079X.2003.00043.x
  • Koriem, K. M. M., & Soliman, R. E. (2014). Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. Journal of Toxicology. https://doi.org/10.1155/2014/583494
  • Kose, E., Sapmaz, H. I., Sarihan, E., Vardi, N., Turkoz, Y., & Ekinci, N. (2012). Beneficial effects of montelukast against methotrexate-induced liver toxicity: A biochemical and histological study. The Scientific World Journal. https://doi.org/10.1100/2012/987508
  • Leo, M. A., & Lieber, C. S. (1999). Alcohol, vitamin A, and β-carotene: Adverse interactions, including hepatotoxicity and carcinogenicity. In American Journal of Clinical Nutrition. https://doi.org/10.1093/ajcn/69.6.1071
  • Mahmoud, A. M., Germoush, M. O., Al-Anazi, K. M., Mahmoud, A. H., Farah, M. A., & Allam, A. A. (2018). Commiphora molmol protects against methotrexate-induced nephrotoxicity by up-regulating Nrf2/ARE/HO-1 signaling. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2018.06.171
  • Mahmoud, A. M., Hussein, O. E., Hozayen, W. G., Bin-Jumah, M., & Abd El-Twab, S. M. (2020). Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-07532-6
  • Mehrzadi, S., Mehrabani, M., Malayeri, A. R., Bakhshayesh, M., Kalantari, H., & Goudarzi, M. (2019). Ellagic acid as a potential antioxidant, alleviates methotrexate-induced hepatotoxicity in male rats. Acta Chirurgica Belgica. https://doi.org/10.1080/00015458.2018.1455419
  • Naewla, S., Sirichoat, A., Pannangrong, W., Chaisawang, P., Wigmore, P., & Welbat, J. U. (2019). Hesperidin alleviates methotrexate-induced memory deficits via hippocampal neurogenesis in adult rats. Nutrients. https://doi.org/10.3390/NU11040936
  • Olayinka, E., Ore, A., Ola, O., & Adeyemo, O. (2015). Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats. Medical Sciences. https://doi.org/10.3390/medsci3030078
  • Olayinka, E. T., Ore, A., Adeyemo, O. A., & Ola, O. S. (2016). Ameliorative effect of gallic acid on methotrexate-induced hepatotoxicity and nephrotoxicity in rat. Journal of Xenobiotics. https://doi.org/10.4081/xeno.2016.6092
  • Paul F. Morrison, Robert L. Dedrick, and R. J. L. (1987). Methotrexate: Pharmacokinetics and Assessment of Toxicity. In Drinking Water and Health, Volume 8 Pharmacokinetics in Risk Assessment.
  • Pınar, N., Kaplan, M., Özgür, T., & Özcan, O. (2018). Ameliorating effects of tempol on methotrexate-induced liver injury in rats. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2018.03.147
  • Pushpavalli, G., Kalaiarasi, P., Veeramani, C., & Pugalendi, K. V. (2010). Effect of chrysin on hepatoprotective and antioxidant status in d-galactosamine-induced hepatitis in rats. European Journal of Pharmacology. https://doi.org/10.1016/j.ejphar.2009.12.031
  • Reiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. In Journal of Pineal Research. https://doi.org/10.1111/jpi.12360
  • Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: Therapeutic potential through its antioxidant property. In Journal of Clinical Biochemistry and Nutrition. https://doi.org/10.3164/jcbn.40.92
  • Tousson, E., Hafez, E., Zaki, S., & Gad, A. (2014). P53, Bcl-2 and CD68 expression in response to amethopterin-induced lung injury and ameliorating role of L-carnitine. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2014.05.007
  • Uz, E., Öktem, F., Yilmaz, H. R., Uzar, E., & Özgüner, F. (2005). The activities of purine-catabolizing enzymes and the level of nitric oxide in rat kidneys subjected to methotrexate: Protective effect of caffeic acid phenethyl ester. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-005-5875-x
  • Vardi, N., Parlakpinar, H., Cetin, A., Erdogan, A., & Ozturk, I. C. (2010). Protective effect of β-carotene on methotrexate-induced oxidative liver damage. Toxicologic Pathology. https://doi.org/10.1177/0192623310367806
  • Zeb, A. (2018). Ellagic acid in suppressing in vivo and in vitro oxidative stresses. In Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-018-3310-3 Zeiny, S. S. (2018). The role of antioxidant (vit-A and glutamine) in ameliorating methotrexate induced hepatic toxicity in rats. Kufa Journal For Veterinary Medical Sciences, 3(1).
  • Zhou, Y. X., Xia, W., Yue, W., Peng, C., Rahman, K., & Zhang, H. (2015). Rhein: A Review of Pharmacological Activities. In Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/578107
There are 43 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Ahmet Uğur Akman 0000-0002-6031-9545

Publication Date February 28, 2021
Submission Date October 6, 2020
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Akman, A. U. (2021). Methotrexate Induced Hepatotoxicity and Antioxidants. Sabuncuoglu Serefeddin Health Sciences, 3(1), 22-35.