Research Article
BibTex RIS Cite

Some Special Matrices and Combinatorial Identities

Year 2020, Volume: 46 Issue: 1, 1 - 12, 29.04.2020
https://doi.org/10.35238/sufefd.675957

Abstract

In the present study, the main aim is to introduce specific number sequences, such as Fibonacci, Pascal, Stirling, and Bell numbers, to define matrices created using the elements of these number sequences and to investigate some combinational identities among these matrices.

References

  • Vajda S (1987). Fibonacci & Lucas Numbers and the Golden Section Theory and Applications. John Wiley & Sons, London.
  • Ayber N (2003). Fibonacci Sayıları. Matematik Dünyası Dergisi Kış: 56-57.
  • Rogers DG (1977). Pascal Triangles, Catalan Numbers and Renewal Arrays. Discrete Mathematics 22: 301-310.
  • Çam Ş(2005). Stirling Sayıları. Matematik Dünyası Dergisi Bahar: 30-34.
  • Aigner M (1999). A Characterization of The Bell Numbers. Discrete Mathematics 205: 207-210.
  • Lee GY, Kim JS, Cho SH (2003). Some Combinatorial Identities via Fibonacci Numbers. Discrete Applied Mathematics 13: 527-534.
  • Wang W and Wang T (2008). Identities via Bell Matrix and Fibonacci Matrix. Discrete Applied Mathematics 156: 2793-2803.
  • Tang Z, Duraiswami R, Gumerov N (2004). Fast Algorithms to Compute Matrix Vector Products for Pascal Matrices. UMIACS-TR-08, CS-TR-4363.
  • Edelman A and Strang G (1993). Pascal Matrices. American Mathematical Monhtly 100:372-376.
  • Cheon GS and Kim JS (2001). Stirling Matrix via Pascal Matrix. Linear Algebra and Its Applications 329:49-59.
  • Lee GY, Kim JS, Lee SG (2002). Factorizations and Eigenvalues of Fibonacci and Symmetric Fibonacci Matrices. Fibonacci Quarterly 40 (3):203-211.

Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler

Year 2020, Volume: 46 Issue: 1, 1 - 12, 29.04.2020
https://doi.org/10.35238/sufefd.675957

Abstract

Bu çalışma, Fibonacci, Pascal, Stirling ve Bell sayıları gibi özel sayı dizilerini tanıtmak, bu sayı dizilerinin elemanları kullanılarak oluşturulan matrisleri tanımlamak ve bu matrisler arasındaki bazı kombinasyonel özdeşlikleri araştırmak için yapılmıştır.

References

  • Vajda S (1987). Fibonacci & Lucas Numbers and the Golden Section Theory and Applications. John Wiley & Sons, London.
  • Ayber N (2003). Fibonacci Sayıları. Matematik Dünyası Dergisi Kış: 56-57.
  • Rogers DG (1977). Pascal Triangles, Catalan Numbers and Renewal Arrays. Discrete Mathematics 22: 301-310.
  • Çam Ş(2005). Stirling Sayıları. Matematik Dünyası Dergisi Bahar: 30-34.
  • Aigner M (1999). A Characterization of The Bell Numbers. Discrete Mathematics 205: 207-210.
  • Lee GY, Kim JS, Cho SH (2003). Some Combinatorial Identities via Fibonacci Numbers. Discrete Applied Mathematics 13: 527-534.
  • Wang W and Wang T (2008). Identities via Bell Matrix and Fibonacci Matrix. Discrete Applied Mathematics 156: 2793-2803.
  • Tang Z, Duraiswami R, Gumerov N (2004). Fast Algorithms to Compute Matrix Vector Products for Pascal Matrices. UMIACS-TR-08, CS-TR-4363.
  • Edelman A and Strang G (1993). Pascal Matrices. American Mathematical Monhtly 100:372-376.
  • Cheon GS and Kim JS (2001). Stirling Matrix via Pascal Matrix. Linear Algebra and Its Applications 329:49-59.
  • Lee GY, Kim JS, Lee SG (2002). Factorizations and Eigenvalues of Fibonacci and Symmetric Fibonacci Matrices. Fibonacci Quarterly 40 (3):203-211.
There are 11 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Fatma Sidre Oğlakkaya

Süleyman Solak

Publication Date April 29, 2020
Submission Date January 20, 2020
Published in Issue Year 2020 Volume: 46 Issue: 1

Cite

APA Oğlakkaya, F. S., & Solak, S. (2020). Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 46(1), 1-12. https://doi.org/10.35238/sufefd.675957
AMA Oğlakkaya FS, Solak S. Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler. sufefd. April 2020;46(1):1-12. doi:10.35238/sufefd.675957
Chicago Oğlakkaya, Fatma Sidre, and Süleyman Solak. “Bazı Özel Matrisler Ve Kombinasyonel Özdeşlikler”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 46, no. 1 (April 2020): 1-12. https://doi.org/10.35238/sufefd.675957.
EndNote Oğlakkaya FS, Solak S (April 1, 2020) Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 46 1 1–12.
IEEE F. S. Oğlakkaya and S. Solak, “Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler”, sufefd, vol. 46, no. 1, pp. 1–12, 2020, doi: 10.35238/sufefd.675957.
ISNAD Oğlakkaya, Fatma Sidre - Solak, Süleyman. “Bazı Özel Matrisler Ve Kombinasyonel Özdeşlikler”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 46/1 (April 2020), 1-12. https://doi.org/10.35238/sufefd.675957.
JAMA Oğlakkaya FS, Solak S. Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler. sufefd. 2020;46:1–12.
MLA Oğlakkaya, Fatma Sidre and Süleyman Solak. “Bazı Özel Matrisler Ve Kombinasyonel Özdeşlikler”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 46, no. 1, 2020, pp. 1-12, doi:10.35238/sufefd.675957.
Vancouver Oğlakkaya FS, Solak S. Bazı Özel Matrisler ve Kombinasyonel Özdeşlikler. sufefd. 2020;46(1):1-12.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Hüseyin YILMAZ
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.