Research Article
BibTex RIS Cite

Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures

Year 2021, Volume: 47 Issue: 2, 203 - 213, 30.10.2021
https://doi.org/10.35238/sufefd.999508

Abstract

Recently, interfacial layer such as metal oxide, insulator and polymer have been used by scientists between the metal and semiconductor to increase the stability of the metal-semiconductor heterojunctions. These materials have been varied according to their usage aims. In this study, graphene nanoribbons (GNR) and 7,7,8,8 Tetracyanoquinodimethane (TCNQ, C12H4N4) layer has been used as interfacial layer between the metal and semiconductor for photodiode applications. The TCNQ layer collects and extracts more electrons in the interface of the device and is used as electron acceptor material for organic solar cells. Herein, we fabricated Al/p-Si/Al, Al/p-Si/TCNQ/Al and Al/p-Si/TCNQ:GNR/Al heterojunctions by physical vapor deposition technique. I-V measurements has been employed under dark and various light illumination conditions to show dielectric properties of the fabricated heterojunctions. From current-voltage characteristics, we calculated the electronic parameters such as ideality factor, barrier heights, series resistances and rise times. It can be concluded from overall results that TCNQ and TCNQ:GNR layers had a major impact on quality and can be considered as quite proper materials for optoelectronic applications.

Supporting Institution

Selcuk University BAP office

Project Number

20211024.

References

  • Anthopoulos, T. D., Singh, B., Marjanovic, N., Sariciftci, N. S., Montaigne Ramil, A., Sitter, H., Cölle, M., & De Leeuw, D. M. (2006). High performance n -channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Applied Physics Letters, 89(21), 7–10. https://doi.org/10.1063/1.2387892
  • Berk, N., Seymen, H., Orak, I., & Karataş, Ş. (2021). The electrical characteristics of metal–semiconductor hetero-structures with graphene oxide and perylenetetracarboxylic dianhydride interface. Journal of Materials Science: Materials in Electronics, 32(13), 17500–17511. https://doi.org/10.1007/s10854-021-06283-w
  • Cifci, O. S., Bakir, M., Meyer, J. L., & Kocyigit, A. (2018). Morphological and electrical properties of ATSP/p-Si photodiode. Materials Science in Semiconductor Processing, 74, 175–182. https://doi.org/10.1016/J.MSSP.2017.10.039
  • Çimen, A., Şağban, H. M., Özdemir, T., & Özmen, Ö. T. (2018). F4-TCNQ Concentration Dependent Capacitance-Voltage (C-V) and Conductivity-Voltage (G/w-V) Characteristics of the Au/P3HT:F4-TCNQ/N-Si (MPS) Schottky Barrier Diodes. "International Journal of Engineering Science Invention, 7(July), 17–25.
  • Erdal, M. O., Koyuncu, M., Doğan, K., Öztürk, T., Kocyigit, A., & Yıldırım, M. (2021). The modification of the characteristics of ZnO nanofibers by TCNQ doping content. Journal of Materials Science: Materials in Electronics, 32(13), 17220–17229. https://doi.org/10.1007/s10854-021-06199-5
  • Erdal, M. O., Yıldırım, M., & Kocyigit, A. (2019). A comparison of the electrical characteristics of TiO2/p-Si/Ag, GNR-TiO2/p-Si/Ag and MWCNT-TiO2/p-Si/Ag photodiodes. Journal of Materials Science: Materials in Electronics, 30(14), 13617–13626. https://doi.org/10.1007/s10854-019-01731-0
  • Eroğlu, A., Demirezen, S., Azizian-Kalandaragh, Y., & Altındal, Ş. (2020). A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. Journal of Materials Science: Materials in Electronics, 31(17), 14466–14477. https://doi.org/10.1007/s10854-020-04006-1
  • Gökçen, M., Altuntaş, H., Altndal, Ş., & Özçelik, S. (2012). Frequency and voltage dependence of negative capacitance in Au/SiO 2/n-GaAs structures. Materials Science in Semiconductor Processing, 15(1), 41–46. https://doi.org/10.1016/j.mssp.2011.08.001
  • Hu, X., Li, X., Li, G., Ji, T., Ai, F., Wu, J., Ha, E., & Hu, J. (2021). Recent Progress of Methods to Enhance Photovoltaic Effect for Self-Powered Heterojunction Photodetectors and Their Applications in Inorganic Low-Dimensional Structures. In Advanced Functional Materials (p. 2011284). John Wiley and Sons Inc. https://doi.org/10.1002/adfm.202011284
  • İlhan, M., Koç, M. M., Coşkun, B., Erkovan, M., & Yakuphanoğlu, F. (2021). Cd dopant effect on structural and optoelectronic properties of TiO2 solar detectors. Journal of Materials Science: Materials in Electronics, 32(2), 2346–2365. https://doi.org/10.1007/s10854-020-05000-3
  • Kacus, H., Sahin, Y., Aydogan, S., Incekara, U., & Yilmaz, M. (2020). Co/aniline blue/silicon sandwich hybrid heterojunction for photodiode and low-temperature applications. Journal of Sandwich Structures & Materials, 109963622090994. https://doi.org/10.1177/1099636220909946
  • Karadaş, S., Yerişkin, S. A., Balbaşı, M., & Azizian-Kalandaragh, Y. (2021). Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. Journal of Physics and Chemistry of Solids, 148(February 2020). https://doi.org/10.1016/j.jpcs.2020.109740
  • Kargar, A., & Lee, C. (2009). Graphene nanoribbon schottky diodes using asymmetric contacts. 2009 9th IEEE Conference on Nanotechnology, IEEE NANO 2009, 8, 243–245.
  • Kim, M. S., Lee, G. J., Kim, H. M., & Song, Y. M. (2017). Parametric optimization of lateral NIPIN phototransistors for flexible image sensors. Sensors (Switzerland), 17(8), 1774. https://doi.org/10.3390/s17081774
  • Koçyiğit, A., Erdal, M. O., Ozel, F., & Yıldırım, M. (2021). Photodiode behaviors of the AgSbS 2 nanocrystals in a Schottky structure. Nanotechnology, 32(38), 385204. https://doi.org/10.1088/1361-6528/ac0b64
  • Kocyiğit, A., SARILMAZ, A., ÖZTÜRK, T., OZEL, F., & Murat, Y. (2021). The Au / CuNiCoS 4 / p -Si photodiode : electrical and morphological characterization. 0–25. https://doi.org/10.3762/bxiv.2021.34.v1
  • Kocyigit, A., Yıldırım, M., Sarılmaz, A., & Ozel, F. (2019). The Au/Cu2WSe4/p-Si photodiode: Electrical and morphological characterization. Journal of Alloys and Compounds, 780, 186–192. https://doi.org/10.1016/j.jallcom.2018.11.372
  • Kostov, P., Gaberl, W., & Zimmermann, H. (2013). High-speed bipolar phototransistors in a 180 nm CMOS process. Optics and Laser Technology, 46(1), 6–13. https://doi.org/10.1016/j.optlastec.2012.04.011
  • Kyoung, S., Jung, E. S., & Sung, M. Y. (2016). Post-annealing processes to improve inhomogeneity of Schottky barrier height in Ti/Al 4H-SiC Schottky barrier diode. Microelectronic Engineering, 154, 69–73. https://doi.org/10.1016/j.mee.2016.01.013
  • Meftah, S. E., Benhaliliba, M., Kaleli, M., Benouis, C. E., Yavru, C. A., & Bayram, A. B. (2020). Optical and electrical characterization of thin film MSP heterojunction based on organic material Al/p-Si/P3HT/Ag. Physica B: Condensed Matter, 593(April), 412238. https://doi.org/10.1016/j.physb.2020.412238
  • Mun, J., Kang, J., Zheng, Y., Luo, S., Wu, Y., Gong, H., Lai, J. C., Wu, H. C., Xue, G., Tok, J. B. H., & Bao, Z. (2020). F4-TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Advanced Electronic Materials, 6(6), 1–9. https://doi.org/10.1002/aelm.202000251
  • Munikrishana Reddy, Y., Nagaraj, M. K., Siva Pratap Reddy, M., Lee, J. H., & Rajagopal Reddy, V. (2013). Temperature-Dependent Current-Voltage (I-V) and Capacitance-Voltage (C-V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes. Brazilian Journal of Physics, 43(1–2), 13–21. https://doi.org/10.1007/s13538-013-0120-7
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science: Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
  • Özmen, A., Aydogan, S., & Yilmaz, M. (2019). Fabrication of spray derived nanostructured n-ZnO/p-Si heterojunction diode and investigation of its response to dark and light. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.04.210
  • Rahmani, M., Ismail, R., Ahmadi, M. T., Kiani, M. J., Saeidmanesh, M., Karimi, F. A. H., Akbari, E., & Rahmani, K. (2013). The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/636239
  • Ramadan, R., & Martín-Palma, R. J. (2020). Electrical Characterization of MIS Schottky Barrier Diodes Based on Nanostructured Porous Silicon and Silver Nanoparticles with Applications in Solar Cells. https://doi.org/10.3390/en13092165
  • Rouger, N., & Maréchal, A. (2019). Design of diamond power devices: Application to Schottky barrier diodes. Energies, 12(12). https://doi.org/10.3390/en12122387
  • Sato, S. (2017). Application of graphene to electronic devices. AM-FPD 2017 - 24th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, Proceedings, 2016(2016), 90–93. https://doi.org/10.1021/acsnano.7b02316.GRAPHENE
  • Shamsir, S., Parvin Poly, L., Chakraborty, R., & Subrina, S. (2021). Current-voltage model of a graphene nanoribbon p-n junction and Schottky junction diode. IET Circuits, Devices and Systems, January. https://doi.org/10.1049/cds2.12092
  • Shao, Z., Jiang, T., Zhang, X., Zhang, X., Wu, X., Xia, F., Xiong, S., Lee, S. T., & Jie, J. (2019). Memory phototransistors based on exponential-association photoelectric conversion law. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-09206-w Srivastava, A., & Chakrabarti, P. (2015). An organic Schottky diode (OSD) based on a-silicon/polycarbazole contact. Synthetic Metals, 207, 96–101. https://doi.org/10.1016/j.synthmet.2015.05.024
  • Taşçıoğlu, I., Tüzün Özmen, Şağban, H. M., Yağlıoğlu, E., & Altındal. (2017). Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode. Journal of Electronic Materials, 46(4), 2379–2386. https://doi.org/10.1007/s11664-017-5294-2
  • Tataroğlu, A., Altındal, Ş., & Azizian-Kalandaragh, Y. (2021). Electrical characterization of Au/n-Si (MS) diode with and without graphene-polyvinylpyrrolidone (Gr-PVP) interface layer. Journal of Materials Science: Materials in Electronics, 32(3), 3451–3459. https://doi.org/10.1007/s10854-020-05091-y
  • Tozlu, C., & Mutlu, A. (2016). Poly(melamine-co-formaldehyde) methylated effect on the interface states of metal/polymer/p-Si Schottky barrier diode. Synthetic Metals, 211, 99–106. https://doi.org/10.1016/j.synthmet.2015.11.023
  • Wager, J. F., Keszler, D. A., & Presley, R. E. (2008). Transparent electronics. Transparent Electronics, May, 1–212. https://doi.org/10.1007/978-0-387-72342-6
  • Wang, Y., Yang, S., Lambada, D. R., & Shafique, S. (2020). A graphene-silicon Schottky photodetector with graphene oxide interlayer. Sensors and Actuators, A: Physical, 314, 112232. https://doi.org/10.1016/j.sna.2020.112232
  • Xie, C., Liu, C. K., Loi, H. L., & Yan, F. (2020). Perovskite-Based Phototransistors and Hybrid Photodetectors. In Advanced Functional Materials (Vol. 30, Issue 20, p. 1903907). Wiley-VCH Verlag. https://doi.org/10.1002/adfm.201903907
  • Ye, Y., Gan, L., Dai, L., Meng, H., Wei, F., Dai, Y., Shi, Z., Yu, B., Guo, X., & Qin, G. (2011). Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 21(32), 11760–11763. https://doi.org/10.1039/c1jm11441g
  • Yenel, E., Torlak, Y., Kocyigit, A., Erden, İ., Kuş, M., & Yıldırım, M. (2021). W- and Mo-based polyoxometalates (POM) as interlayer in Al/n–Si photodiodes. Journal of Materials Science: Materials in Electronics, 32(9), 12094–12110. https://doi.org/10.1007/s10854-021-05838-1
  • Yıldırım, M., Kocyigit, A., Sarilmaz, A., Ozel, S. S., Kus, M., & Ozel, F. (2020). Ternary CuCo2S4 Thiospinel Nanocrystal-Coated Photodiode with Improved Photoresponsivity and Acceptance Angles for Optoelectronic Applications. Journal of Electronic Materials, 49(2), 949–958. https://doi.org/10.1007/s11664-019-07841-z
  • Yücedag, I., Kaya, A., Altındal, E., & Uslu, I. (2014). Electrical and Dielectric Properties and Intersection Behavior of G/ω-V Plots for Al/Co-PVA/p-Si (MPS) Structures at Temperatures below Room Temperature. Journal of the Korean Physical Society, 65(12), 2082–2089. https://doi.org/10.3938/jkps.65.2082
  • Zeghdar, K., Dehimi, L., Pezzimenti, F., Megherbi, M. L., & Della Corte, F. G. (2020). Analysis of the Electrical Characteristics of Mo/4H-SiC Schottky Barrier Diodes for Temperature-Sensing Applications. Journal of Electronic Materials, 49(2), 1322–1329. https://doi.org/10.1007/s11664-019-07802-6

Organik Yariiletken Tetrasiyaokuinodimetan Tabanlı Heteroyapıların Optoelektronik Özelliklerinin Araştırılması

Year 2021, Volume: 47 Issue: 2, 203 - 213, 30.10.2021
https://doi.org/10.35238/sufefd.999508

Abstract

Son yıllarda bilim insanları metal-yarıiletken heteroeklemlerinin dayanıklılığını arttırmak maksadıyla metal ile yarıiletken arasına metal oksit, yalıtkan veya da polimer tabakalar eklemektedirler. Bu malzemeler amaca göre değişiklik göstermektedir. Bu çalışma kapsamında, fotodiyot uygulamaları için metal ve yarı iletken arasında ara yüzey olarak grafen nanoribbon (GNR) ve 7,7,8,8 Tetrasiyaokuinodimetan-(Tetracyanoquinodimethane TCNQ, C12H4N4) katmanı kullanılmıştır. TCNQ katmanı, cihazın arayüzünde daha fazla elektron toplar ve çıkarır ve organik güneş pillerinde elektron alıcı malzeme olarak kullanılır. Daha sonra fiziksel buhar biriktirme yöntemiyle Al/p-Si/Al, Al/p-Si/TCNQ/Al ve Al/p-Si/TCNQ:GNR/Al heteroeklemleri elde edilmiştir. Elektriksel karakterizasyon kapsamında Akım-voltaj ölçümleri hem karanlık ortamda hemde farklı aydınlatma değerlerinde gerçekleştirilmiştir. Akım-voltaj karakteristiklerinden, idealite faktörü, bariyer yüksekliği, seri direnç ve yükselme zamanı gibi elektronik parametreler hesaplanmıştır. Sonuç olarak, TCNQ ve TCNQ:GNR katmanlarının kalite üzerinde büyük bir etkisi olduğu ve optoelektronik uygulamalar için oldukça uygun malzemeler olarak kabul edilebilebilir.

Project Number

20211024.

References

  • Anthopoulos, T. D., Singh, B., Marjanovic, N., Sariciftci, N. S., Montaigne Ramil, A., Sitter, H., Cölle, M., & De Leeuw, D. M. (2006). High performance n -channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Applied Physics Letters, 89(21), 7–10. https://doi.org/10.1063/1.2387892
  • Berk, N., Seymen, H., Orak, I., & Karataş, Ş. (2021). The electrical characteristics of metal–semiconductor hetero-structures with graphene oxide and perylenetetracarboxylic dianhydride interface. Journal of Materials Science: Materials in Electronics, 32(13), 17500–17511. https://doi.org/10.1007/s10854-021-06283-w
  • Cifci, O. S., Bakir, M., Meyer, J. L., & Kocyigit, A. (2018). Morphological and electrical properties of ATSP/p-Si photodiode. Materials Science in Semiconductor Processing, 74, 175–182. https://doi.org/10.1016/J.MSSP.2017.10.039
  • Çimen, A., Şağban, H. M., Özdemir, T., & Özmen, Ö. T. (2018). F4-TCNQ Concentration Dependent Capacitance-Voltage (C-V) and Conductivity-Voltage (G/w-V) Characteristics of the Au/P3HT:F4-TCNQ/N-Si (MPS) Schottky Barrier Diodes. "International Journal of Engineering Science Invention, 7(July), 17–25.
  • Erdal, M. O., Koyuncu, M., Doğan, K., Öztürk, T., Kocyigit, A., & Yıldırım, M. (2021). The modification of the characteristics of ZnO nanofibers by TCNQ doping content. Journal of Materials Science: Materials in Electronics, 32(13), 17220–17229. https://doi.org/10.1007/s10854-021-06199-5
  • Erdal, M. O., Yıldırım, M., & Kocyigit, A. (2019). A comparison of the electrical characteristics of TiO2/p-Si/Ag, GNR-TiO2/p-Si/Ag and MWCNT-TiO2/p-Si/Ag photodiodes. Journal of Materials Science: Materials in Electronics, 30(14), 13617–13626. https://doi.org/10.1007/s10854-019-01731-0
  • Eroğlu, A., Demirezen, S., Azizian-Kalandaragh, Y., & Altındal, Ş. (2020). A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. Journal of Materials Science: Materials in Electronics, 31(17), 14466–14477. https://doi.org/10.1007/s10854-020-04006-1
  • Gökçen, M., Altuntaş, H., Altndal, Ş., & Özçelik, S. (2012). Frequency and voltage dependence of negative capacitance in Au/SiO 2/n-GaAs structures. Materials Science in Semiconductor Processing, 15(1), 41–46. https://doi.org/10.1016/j.mssp.2011.08.001
  • Hu, X., Li, X., Li, G., Ji, T., Ai, F., Wu, J., Ha, E., & Hu, J. (2021). Recent Progress of Methods to Enhance Photovoltaic Effect for Self-Powered Heterojunction Photodetectors and Their Applications in Inorganic Low-Dimensional Structures. In Advanced Functional Materials (p. 2011284). John Wiley and Sons Inc. https://doi.org/10.1002/adfm.202011284
  • İlhan, M., Koç, M. M., Coşkun, B., Erkovan, M., & Yakuphanoğlu, F. (2021). Cd dopant effect on structural and optoelectronic properties of TiO2 solar detectors. Journal of Materials Science: Materials in Electronics, 32(2), 2346–2365. https://doi.org/10.1007/s10854-020-05000-3
  • Kacus, H., Sahin, Y., Aydogan, S., Incekara, U., & Yilmaz, M. (2020). Co/aniline blue/silicon sandwich hybrid heterojunction for photodiode and low-temperature applications. Journal of Sandwich Structures & Materials, 109963622090994. https://doi.org/10.1177/1099636220909946
  • Karadaş, S., Yerişkin, S. A., Balbaşı, M., & Azizian-Kalandaragh, Y. (2021). Complex dielectric, complex electric modulus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. Journal of Physics and Chemistry of Solids, 148(February 2020). https://doi.org/10.1016/j.jpcs.2020.109740
  • Kargar, A., & Lee, C. (2009). Graphene nanoribbon schottky diodes using asymmetric contacts. 2009 9th IEEE Conference on Nanotechnology, IEEE NANO 2009, 8, 243–245.
  • Kim, M. S., Lee, G. J., Kim, H. M., & Song, Y. M. (2017). Parametric optimization of lateral NIPIN phototransistors for flexible image sensors. Sensors (Switzerland), 17(8), 1774. https://doi.org/10.3390/s17081774
  • Koçyiğit, A., Erdal, M. O., Ozel, F., & Yıldırım, M. (2021). Photodiode behaviors of the AgSbS 2 nanocrystals in a Schottky structure. Nanotechnology, 32(38), 385204. https://doi.org/10.1088/1361-6528/ac0b64
  • Kocyiğit, A., SARILMAZ, A., ÖZTÜRK, T., OZEL, F., & Murat, Y. (2021). The Au / CuNiCoS 4 / p -Si photodiode : electrical and morphological characterization. 0–25. https://doi.org/10.3762/bxiv.2021.34.v1
  • Kocyigit, A., Yıldırım, M., Sarılmaz, A., & Ozel, F. (2019). The Au/Cu2WSe4/p-Si photodiode: Electrical and morphological characterization. Journal of Alloys and Compounds, 780, 186–192. https://doi.org/10.1016/j.jallcom.2018.11.372
  • Kostov, P., Gaberl, W., & Zimmermann, H. (2013). High-speed bipolar phototransistors in a 180 nm CMOS process. Optics and Laser Technology, 46(1), 6–13. https://doi.org/10.1016/j.optlastec.2012.04.011
  • Kyoung, S., Jung, E. S., & Sung, M. Y. (2016). Post-annealing processes to improve inhomogeneity of Schottky barrier height in Ti/Al 4H-SiC Schottky barrier diode. Microelectronic Engineering, 154, 69–73. https://doi.org/10.1016/j.mee.2016.01.013
  • Meftah, S. E., Benhaliliba, M., Kaleli, M., Benouis, C. E., Yavru, C. A., & Bayram, A. B. (2020). Optical and electrical characterization of thin film MSP heterojunction based on organic material Al/p-Si/P3HT/Ag. Physica B: Condensed Matter, 593(April), 412238. https://doi.org/10.1016/j.physb.2020.412238
  • Mun, J., Kang, J., Zheng, Y., Luo, S., Wu, Y., Gong, H., Lai, J. C., Wu, H. C., Xue, G., Tok, J. B. H., & Bao, Z. (2020). F4-TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Advanced Electronic Materials, 6(6), 1–9. https://doi.org/10.1002/aelm.202000251
  • Munikrishana Reddy, Y., Nagaraj, M. K., Siva Pratap Reddy, M., Lee, J. H., & Rajagopal Reddy, V. (2013). Temperature-Dependent Current-Voltage (I-V) and Capacitance-Voltage (C-V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes. Brazilian Journal of Physics, 43(1–2), 13–21. https://doi.org/10.1007/s13538-013-0120-7
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science: Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
  • Özmen, A., Aydogan, S., & Yilmaz, M. (2019). Fabrication of spray derived nanostructured n-ZnO/p-Si heterojunction diode and investigation of its response to dark and light. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.04.210
  • Rahmani, M., Ismail, R., Ahmadi, M. T., Kiani, M. J., Saeidmanesh, M., Karimi, F. A. H., Akbari, E., & Rahmani, K. (2013). The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/636239
  • Ramadan, R., & Martín-Palma, R. J. (2020). Electrical Characterization of MIS Schottky Barrier Diodes Based on Nanostructured Porous Silicon and Silver Nanoparticles with Applications in Solar Cells. https://doi.org/10.3390/en13092165
  • Rouger, N., & Maréchal, A. (2019). Design of diamond power devices: Application to Schottky barrier diodes. Energies, 12(12). https://doi.org/10.3390/en12122387
  • Sato, S. (2017). Application of graphene to electronic devices. AM-FPD 2017 - 24th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, Proceedings, 2016(2016), 90–93. https://doi.org/10.1021/acsnano.7b02316.GRAPHENE
  • Shamsir, S., Parvin Poly, L., Chakraborty, R., & Subrina, S. (2021). Current-voltage model of a graphene nanoribbon p-n junction and Schottky junction diode. IET Circuits, Devices and Systems, January. https://doi.org/10.1049/cds2.12092
  • Shao, Z., Jiang, T., Zhang, X., Zhang, X., Wu, X., Xia, F., Xiong, S., Lee, S. T., & Jie, J. (2019). Memory phototransistors based on exponential-association photoelectric conversion law. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-09206-w Srivastava, A., & Chakrabarti, P. (2015). An organic Schottky diode (OSD) based on a-silicon/polycarbazole contact. Synthetic Metals, 207, 96–101. https://doi.org/10.1016/j.synthmet.2015.05.024
  • Taşçıoğlu, I., Tüzün Özmen, Şağban, H. M., Yağlıoğlu, E., & Altındal. (2017). Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode. Journal of Electronic Materials, 46(4), 2379–2386. https://doi.org/10.1007/s11664-017-5294-2
  • Tataroğlu, A., Altındal, Ş., & Azizian-Kalandaragh, Y. (2021). Electrical characterization of Au/n-Si (MS) diode with and without graphene-polyvinylpyrrolidone (Gr-PVP) interface layer. Journal of Materials Science: Materials in Electronics, 32(3), 3451–3459. https://doi.org/10.1007/s10854-020-05091-y
  • Tozlu, C., & Mutlu, A. (2016). Poly(melamine-co-formaldehyde) methylated effect on the interface states of metal/polymer/p-Si Schottky barrier diode. Synthetic Metals, 211, 99–106. https://doi.org/10.1016/j.synthmet.2015.11.023
  • Wager, J. F., Keszler, D. A., & Presley, R. E. (2008). Transparent electronics. Transparent Electronics, May, 1–212. https://doi.org/10.1007/978-0-387-72342-6
  • Wang, Y., Yang, S., Lambada, D. R., & Shafique, S. (2020). A graphene-silicon Schottky photodetector with graphene oxide interlayer. Sensors and Actuators, A: Physical, 314, 112232. https://doi.org/10.1016/j.sna.2020.112232
  • Xie, C., Liu, C. K., Loi, H. L., & Yan, F. (2020). Perovskite-Based Phototransistors and Hybrid Photodetectors. In Advanced Functional Materials (Vol. 30, Issue 20, p. 1903907). Wiley-VCH Verlag. https://doi.org/10.1002/adfm.201903907
  • Ye, Y., Gan, L., Dai, L., Meng, H., Wei, F., Dai, Y., Shi, Z., Yu, B., Guo, X., & Qin, G. (2011). Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 21(32), 11760–11763. https://doi.org/10.1039/c1jm11441g
  • Yenel, E., Torlak, Y., Kocyigit, A., Erden, İ., Kuş, M., & Yıldırım, M. (2021). W- and Mo-based polyoxometalates (POM) as interlayer in Al/n–Si photodiodes. Journal of Materials Science: Materials in Electronics, 32(9), 12094–12110. https://doi.org/10.1007/s10854-021-05838-1
  • Yıldırım, M., Kocyigit, A., Sarilmaz, A., Ozel, S. S., Kus, M., & Ozel, F. (2020). Ternary CuCo2S4 Thiospinel Nanocrystal-Coated Photodiode with Improved Photoresponsivity and Acceptance Angles for Optoelectronic Applications. Journal of Electronic Materials, 49(2), 949–958. https://doi.org/10.1007/s11664-019-07841-z
  • Yücedag, I., Kaya, A., Altındal, E., & Uslu, I. (2014). Electrical and Dielectric Properties and Intersection Behavior of G/ω-V Plots for Al/Co-PVA/p-Si (MPS) Structures at Temperatures below Room Temperature. Journal of the Korean Physical Society, 65(12), 2082–2089. https://doi.org/10.3938/jkps.65.2082
  • Zeghdar, K., Dehimi, L., Pezzimenti, F., Megherbi, M. L., & Della Corte, F. G. (2020). Analysis of the Electrical Characteristics of Mo/4H-SiC Schottky Barrier Diodes for Temperature-Sensing Applications. Journal of Electronic Materials, 49(2), 1322–1329. https://doi.org/10.1007/s11664-019-07802-6
There are 41 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Burcu Avcı This is me 0000-0003-4455-5684

Ali Akbar Hussaını 0000-0002-7128-9994

Mehmet Okan Erdal This is me 0000-0003-4469-3438

Murat Yıldırım 0000-0002-4541-3752

Project Number 20211024.
Publication Date October 30, 2021
Submission Date September 24, 2021
Published in Issue Year 2021 Volume: 47 Issue: 2

Cite

APA Avcı, B., Hussaını, A. A., Erdal, M. O., Yıldırım, M. (2021). Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 47(2), 203-213. https://doi.org/10.35238/sufefd.999508
AMA Avcı B, Hussaını AA, Erdal MO, Yıldırım M. Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures. sufefd. October 2021;47(2):203-213. doi:10.35238/sufefd.999508
Chicago Avcı, Burcu, Ali Akbar Hussaını, Mehmet Okan Erdal, and Murat Yıldırım. “Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47, no. 2 (October 2021): 203-13. https://doi.org/10.35238/sufefd.999508.
EndNote Avcı B, Hussaını AA, Erdal MO, Yıldırım M (October 1, 2021) Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47 2 203–213.
IEEE B. Avcı, A. A. Hussaını, M. O. Erdal, and M. Yıldırım, “Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures”, sufefd, vol. 47, no. 2, pp. 203–213, 2021, doi: 10.35238/sufefd.999508.
ISNAD Avcı, Burcu et al. “Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47/2 (October 2021), 203-213. https://doi.org/10.35238/sufefd.999508.
JAMA Avcı B, Hussaını AA, Erdal MO, Yıldırım M. Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures. sufefd. 2021;47:203–213.
MLA Avcı, Burcu et al. “Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 47, no. 2, 2021, pp. 203-1, doi:10.35238/sufefd.999508.
Vancouver Avcı B, Hussaını AA, Erdal MO, Yıldırım M. Investigation of Optoelectronic Properties of Organic Semiconductor Tetracyaoquinodimethane Based Heterostructures. sufefd. 2021;47(2):203-1.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Metin AKSOY
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.