BibTex RIS Cite

Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi

Year 2016, Volume: 1 Issue: 2, 74 - 79, 01.12.2016

Abstract

Bu çalışmada hava araç zırhların balistik çarpması sayısal benzetim yoluyla gerçekleştirilerek performans tayinleri yapılmıştır. Yüksek performanslı elyaf kumaşlardan üretilmiş zırhların balistik çarpma cevabi ileri sonlu farklar yöntemi ile hesaplanmıştır. Silindirik merminin bükümlü ipliklerden dokunmuş kompozit kumaşa 90°’lik açı ile dik çarpması analiz edilmiştir. Pim-eklem (pin-joints) modeli kullanılarak iplik parçaları ayrık kütle-yaysönümleyici kullanılarak modellenmiştir. Çarpmadan sonra yer değiştirmeler, hızlardaki değişim, malzemede oluşan göçme miktarı hesaplanmış ve grafiksel olarak gösterilmiştir. Büküm etkisinin hava araç zırhlarının balistik performansına olan etkisi incelenmiştir

References

  • Cunniff P M, Ting J, (1999): Development of a numerical model to characterize the ballistic behavior of fabrics, Proceedings of the 18th International Symposium on Ballistics, San Antonio TX,15-19 November, 822-828. 2016, Williamsburg, Virginia-USA.
  • Eken S, Phoenix S L, Yavuz A K (2016) Computational Model for Woven Fabrics Subjected to Ballistic Impact by a Projectile, American Society for Composites 31 Technical Conference and ASTM Committee D30 Meeting, September 19-22, 2016, Williamsburg, Virginia-USA.
  • Lim C T, Shim V P W, Ng Y H, (2003): Finite- element modeling of the ballistic impact of fabric armor, Int J Impact Eng 28, 13–31.
  • Lim J S, Lee B H, Lee C B, Han I-S, (2012) Effect of the Weaving Density of Aramid Fabrics on Their Engineering, 4, 944-949. Ballistic Impacts,
  • Phoenix S L, Porwal P K, (2003): A new membrane model for ballistic impact response and V50 performance of multi-ply fibrous systems, Int J Solids and Structures, 40, 6723-6765.Porwal P K, Phoenix S L, (2005): Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor, Int J Fracture, 135, 217-249.
  • Phoenix S L, Eken S, Yavuz A K, (2016) PC-Based Numerical Modeling of Ballistic Impact into Nonwoven Fibrous Targets, American Society for Composites 31 Technical Conference and ASTM Committee D30 Meeting, September 19- 22, 2016, Williamsburg, Virginia-USA.
  • Porwal P K, Phoenix S L, (2008): Effects of layer stacking order on the V50 velocity of a two- layered hybrid armor system, Journal of Mechanics of Materials and Structures, 3, 627- 639.
  • Rakhmatulin KhA, (1947): Impact on a flexible fiber, Prikl Mat Mekh 11, 379–82 (Rusça’dan çeviri).
  • Rakhmatulin KhA, (1951): Normal impact at a varying velocity on a flexible fiber Uchenye Zapiski Moskovosk gos Univ 4, 154 (Rusça’dan çeviri).
  • Rakhmatulin KhA, 1952 Normal impact on a flexible fiber by a body of given shape Prikl Mat Mekh 16, 23–24 (Rusça’dan çeviri).Rakhmatulin KhA, Dem’yanov YuA, (1961): Strength Under High Transient Loads, pp 94-152 (İngilizce çevirisi).
  • Roylance D, Wilde A, Tocci G, (1973): Ballistic impact of textile structures, Textile Research Journal, 43, 34–41.
  • Roylance D, Wang S S, (1980): Penetration mechanics of textile structures, Ballistic Materials and Penetration Mechanics, Elsevier, Amsterdam.
  • Roylance D, Chammas P, Ting J, Chi H, Scott B, (1995): Numerical modeling of fabric impact, Proceedings of the National Meeting of the American Society of Mechanical Engineers ASME, San Francisco, October.
  • Sadegh A M, Cavallaro P V, (2012) Mechanics of Energy Absorbability in Plain-Woven Fabrics: An Analytical Approach, Journal of Engineered Fibers and Fabrics, 7:1, 10-25.
  • Shimek M E, Fahrenthold E P (2015): Impact Dynamics Simulation for Multilayer Fabrics of Various Weaves, AIAA Journal, 53, 1793-1811.
  • Shimek M E, Fahrenthold E P (2012): Effects of Weave Type on Ballistic Performance of Fabrics, AIAA Journal, 50, pp 2558-2565.
  • Tan V B C, Shim V P W, Zeng X, (2005): Modelling crimp in woven fabrics subjected to ballistic impact, Int J Impact Eng 32, 561–574.
  • Ting C, Ting, J, Cunniff P M, Roylance D, (1998): Numerical characterization of the effects of transverse yarn interaction on textile ballistic response, Proceedings of the 30th International SAMPE Technical Conference, 57–67.
  • Yavuz A K, Phoenix, S L, Balkan D, (2012) New Model for Interlaced Yarns in the Ballistic Impact of Flexible Body Armors, Advanced Materials Research 445, 1023-1028.
  • Yavuz A K, Phoenix S L, Eken S. (2016) The Ballistic Impact Response of Flexible Composite Body Armor, American Society for Composites 31 Technical Conference and ASTM Committee D30 Meeting, September 19-22,
  • Zeng X S, Tan V B C, Shim V P W, (2006): Modelling inter-yarn friction in woven fabric armour, Int J Numer Meth Eng 66, 1309–1330.
  • Zeng X S, Shim V P W, Tan V B C, (2005): Influence of boundary conditions on the ballistic performance of high-strength fabric targets, Int J Impact Eng 32, 631–642.
  • Zhou R, (2014) Effects of Crimp and Slip on Laminar and Woven Fabrics Subjected to Ballistic Üniversitesi. Tezi, Cornell

NUMERICAL INVESTIGATION OF THE BALISTICAL PERFORMANCE CHARACTERISTICS OF THE AIRCRAFT ARMORS

Year 2016, Volume: 1 Issue: 2, 74 - 79, 01.12.2016

Abstract

The performance of ballistic impacts of airborne armor was determined by numerical simulation. The ballistic impact response of armor made from high performance fiber fabrics was calculated by the advanced end difference method. An analysis of the perpendicular bending of the cylindrical bullet with a 90 ° angle was performed on the composite fabric woven from twisted yarns. Pin-joints (pin joints) are modeled for discrete mass-spring-damper. Subsequent changes, rapid changes, are computed locally and graphically displayed. The effect of aircraft on ballistic performance of armor has been examined

References

  • Cunniff P M, Ting J, (1999): Development of a numerical model to characterize the ballistic behavior of fabrics, Proceedings of the 18th International Symposium on Ballistics, San Antonio TX,15-19 November, 822-828. 2016, Williamsburg, Virginia-USA.
  • Eken S, Phoenix S L, Yavuz A K (2016) Computational Model for Woven Fabrics Subjected to Ballistic Impact by a Projectile, American Society for Composites 31 Technical Conference and ASTM Committee D30 Meeting, September 19-22, 2016, Williamsburg, Virginia-USA.
  • Lim C T, Shim V P W, Ng Y H, (2003): Finite- element modeling of the ballistic impact of fabric armor, Int J Impact Eng 28, 13–31.
  • Lim J S, Lee B H, Lee C B, Han I-S, (2012) Effect of the Weaving Density of Aramid Fabrics on Their Engineering, 4, 944-949. Ballistic Impacts,
  • Phoenix S L, Porwal P K, (2003): A new membrane model for ballistic impact response and V50 performance of multi-ply fibrous systems, Int J Solids and Structures, 40, 6723-6765.Porwal P K, Phoenix S L, (2005): Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor, Int J Fracture, 135, 217-249.
  • Phoenix S L, Eken S, Yavuz A K, (2016) PC-Based Numerical Modeling of Ballistic Impact into Nonwoven Fibrous Targets, American Society for Composites 31 Technical Conference and ASTM Committee D30 Meeting, September 19- 22, 2016, Williamsburg, Virginia-USA.
  • Porwal P K, Phoenix S L, (2008): Effects of layer stacking order on the V50 velocity of a two- layered hybrid armor system, Journal of Mechanics of Materials and Structures, 3, 627- 639.
  • Rakhmatulin KhA, (1947): Impact on a flexible fiber, Prikl Mat Mekh 11, 379–82 (Rusça’dan çeviri).
  • Rakhmatulin KhA, (1951): Normal impact at a varying velocity on a flexible fiber Uchenye Zapiski Moskovosk gos Univ 4, 154 (Rusça’dan çeviri).
  • Rakhmatulin KhA, 1952 Normal impact on a flexible fiber by a body of given shape Prikl Mat Mekh 16, 23–24 (Rusça’dan çeviri).Rakhmatulin KhA, Dem’yanov YuA, (1961): Strength Under High Transient Loads, pp 94-152 (İngilizce çevirisi).
  • Roylance D, Wilde A, Tocci G, (1973): Ballistic impact of textile structures, Textile Research Journal, 43, 34–41.
  • Roylance D, Wang S S, (1980): Penetration mechanics of textile structures, Ballistic Materials and Penetration Mechanics, Elsevier, Amsterdam.
  • Roylance D, Chammas P, Ting J, Chi H, Scott B, (1995): Numerical modeling of fabric impact, Proceedings of the National Meeting of the American Society of Mechanical Engineers ASME, San Francisco, October.
  • Sadegh A M, Cavallaro P V, (2012) Mechanics of Energy Absorbability in Plain-Woven Fabrics: An Analytical Approach, Journal of Engineered Fibers and Fabrics, 7:1, 10-25.
  • Shimek M E, Fahrenthold E P (2015): Impact Dynamics Simulation for Multilayer Fabrics of Various Weaves, AIAA Journal, 53, 1793-1811.
  • Shimek M E, Fahrenthold E P (2012): Effects of Weave Type on Ballistic Performance of Fabrics, AIAA Journal, 50, pp 2558-2565.
  • Tan V B C, Shim V P W, Zeng X, (2005): Modelling crimp in woven fabrics subjected to ballistic impact, Int J Impact Eng 32, 561–574.
  • Ting C, Ting, J, Cunniff P M, Roylance D, (1998): Numerical characterization of the effects of transverse yarn interaction on textile ballistic response, Proceedings of the 30th International SAMPE Technical Conference, 57–67.
  • Yavuz A K, Phoenix, S L, Balkan D, (2012) New Model for Interlaced Yarns in the Ballistic Impact of Flexible Body Armors, Advanced Materials Research 445, 1023-1028.
  • Yavuz A K, Phoenix S L, Eken S. (2016) The Ballistic Impact Response of Flexible Composite Body Armor, American Society for Composites 31 Technical Conference and ASTM Committee D30 Meeting, September 19-22,
  • Zeng X S, Tan V B C, Shim V P W, (2006): Modelling inter-yarn friction in woven fabric armour, Int J Numer Meth Eng 66, 1309–1330.
  • Zeng X S, Shim V P W, Tan V B C, (2005): Influence of boundary conditions on the ballistic performance of high-strength fabric targets, Int J Impact Eng 32, 631–642.
  • Zhou R, (2014) Effects of Crimp and Slip on Laminar and Woven Fabrics Subjected to Ballistic Üniversitesi. Tezi, Cornell
There are 23 citations in total.

Details

Other ID JA95HB79FR
Journal Section Research Article
Authors

Seher Eken This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 1 Issue: 2

Cite

APA Eken, S. (2016). Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi. Sürdürülebilir Havacılık Araştırmaları Dergisi, 1(2), 74-79.
AMA Eken S. Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi. SÜHAD. December 2016;1(2):74-79.
Chicago Eken, Seher. “Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi”. Sürdürülebilir Havacılık Araştırmaları Dergisi 1, no. 2 (December 2016): 74-79.
EndNote Eken S (December 1, 2016) Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi. Sürdürülebilir Havacılık Araştırmaları Dergisi 1 2 74–79.
IEEE S. Eken, “Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi”, SÜHAD, vol. 1, no. 2, pp. 74–79, 2016.
ISNAD Eken, Seher. “Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi”. Sürdürülebilir Havacılık Araştırmaları Dergisi 1/2 (December 2016), 74-79.
JAMA Eken S. Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi. SÜHAD. 2016;1:74–79.
MLA Eken, Seher. “Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi”. Sürdürülebilir Havacılık Araştırmaları Dergisi, vol. 1, no. 2, 2016, pp. 74-79.
Vancouver Eken S. Hava Araç Zırhlarının Balistik Performans Karakteristiğinin Sayısal İncelenmesi. SÜHAD. 2016;1(2):74-9.