Research Article
BibTex RIS Cite

TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER

Year 2017, Volume: 5 Issue: 2, 133 - 143, 01.06.2017
https://doi.org/10.15317/Scitech.2017.77

Abstract

Present of micropollutants in aquatic environments has become an alarming

environmental problem for both living creatures and environment. Micropollutants, also called as

emerging contaminants arise from natural substances and increasing variety of anthropogenic events.

Micropollutants consist of pharmaceuticals, personal care products, steroid hormones, industrial

chemicals, pesticides, polyaromatic hydrocarbons and other recently seen compounds. These emerging

contaminants are commonly found in very low concentration in different water bodies ranging from a

few ng/l to several μg/l.

Many existing Wastewater Treatment Plants (WWTPs) in all over the world are not especially designed

for removing micropollutants. Low concentration and diversity of micropollutants complicate the

dedection and analysis procedures during the treatment processes. Furthermore, entering

micropollutants to the WWTPs continuously and stable structure of many micropollutants make

difficult to eliminate these emerging compounds sufficiently. Therefore, many micropollutants of

unknown concentration pass to aquatic environment from WWTPs. The occurence of micropollutants

with a significant levels in aquatic environments disrupt the aquatic ecosystems with a number of

adverse effects including short-term and long-term toxicity such as endocrine disrupting effects. Besides

the known negative effects of micropollutants there are great number of micropollutants whose effects

on living organisms are still unknown. As a result, removing these compounds is of a great importance

both to protect environmental ecosystem and human health. Considering that the conventional methods

are insufficient for removing the micropollutants other alternative treatment methods including

coagulation–flocculation, activated carbon adsorption (powdered activated carbon and granular

activated carbon), advanced oxidation processes (AOPs), membrane processes and membrane bioreactor

can be applied for better removal.

In this study, alternative treatments methods and removal efficiencies of each treatment methods on

different micropollutants were investigated and all alternative treatment methods were compared

between each other in terms of micropollutant removal rates.

References

  • Alexander, J.T., Hai, F.I., Al-aboud, T.M.., 2012, “Chemical Coagulation-Based Processes for Trace Organic Contaminant Removal: Current State And Future Potential” Journal of Environmental Management, Vol. 111, pp. 195–207.
  • Asakura, H., Matsuto T., 2009, “ Experimental Study of Behavior of Endocrine-Disrupting Chemicals in Leachate Treatment Process and Evaluation of Removal Efficiency”, Waste Management, Vol. 29, pp.1852–1859.
  • Beier, S., Cramer, C., Koster, S., Mauer, C., Palmowski, L., Schroder, H., et al., 2011, “Full Scale Membrane Bioreactor Treatment of Hospital Wastewater as Forerunner for Hot-spot Wastewater Treatment Solutions in High Density Urban Areas”, Water Science and Technology, Vol. 63 (1), pp. 66–71.
  • Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A., Siegrist, H., 2012, “Removal of Micropollutants in Municipal Wastewater Treatment Plants by Powder-Activated Carbon”, Water Science and Technology Vol., 66, pp. 2115–2121.
  • Bolong, N., Ismail, A.F., Salim, M.R., Matsuura, T., 2009, “ A Review of The Effects of Emerging Contaminants in Wastewater and Options for Their Removal”, Desalination, Vol. 239, pp. 229– 46.
  • Choi, K.J., Kim S.G., Kim S.H., 2008, “Removal of Antibiotics by Coagulation and Granular Activated Carbon Filtration”, Journal of Hazardous Materials, Vol. 151, pp. 38–43.
  • Fent, K., Weston, A.A, Carminada, D., 2006, “Ecotoxicology of Human Pharmaceuticals”, Aquatic Toxicology , Vol. 76 (2), pp. 122–159.
  • Garcia, N., Moreno, J., Cartmell, E., Rodriguez-Roda, I., Judd, S., 2013, “The Application of Microfiltration-Reverse Osmosis/Nanofiltration to Trace Organics Removal for Municipal Wastewater Reuse” Environmental Technology, Vol. 34 (24), pp. 3183–3189.
  • Gerrity, D., Gamage, S., Holady, J.C., Mawhinney, D.B., Quinones, O., Trenholm, R.A., et al., 2011, “Pilot-scale Evaluation of Ozone and Biological Activated Carbon for Trace Organic Contaminant Mitigation and Disinfection”, Water Research, Vol. 45 (5), pp. 2155–2165.
  • Grover, D.P., Zhou, J.L., Frickers, P.E., Readman, J.W., 2011, “Improved Removal of Estrogenic and Pharmaceutical Compounds in Sewage Effluent by Full Scale Granular Activated Carbon: Iimpact on Receiving River Water”, Journal of Hazardous Materials, Vol. 185 (2), pp. 1005– 1011.
  • Hern{ndez-Leal, L., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011, “Removal of Micropollutants from Aerobically Treated Grey Water via Ozone and Activated Carbon”, Water Research, Vol. 45 (9), pp. 2887–2896.
  • Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., McArdell, C.S., Ort, C., et al., 2009, “Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-scale Post-ozonation Followed by Sand Filtration”, Environmental Science & Technology, Vol. 43 (20), pp. 7862–7869.
  • Jermann, D., Pronk, W., Boller, M., Schäfer, A.I., 2009, “The Role of NOM Fouling for The Retention of Estradiol and Ibuprofen During Ultrafiltration”, Journal of Membrane Science, Vol. 329, pp. 75–84.
  • Kim, I., Yamashita, N., Tanaka, H., 2009, “ Performance of UV and UV/H2O2 Processes for The Removal of Pharmaceuticals Detected in Secondary Effluent of a Sewage Treatment Plant in Japan”, Journal of Hazardous Materials, Vol. 166 (2), pp. 1134–1140.
  • Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012, “Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination”, Environmental Science & Technology, Vol. 46 (3), pp. 1536–1545.
  • Kovalova, L., Siegrist, H., von Gunten, U., Eugster, J., Hagenbuch, M., Wittmer, A., et al., 2013, “Elimination of Micropollutants During Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV”, Environmental Science & Technology, Vol. 47 (149, pp. 7899–7908.
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang Xiaochang C., 2014, “A Review on The Occurrence of Micropollutants in The Aquatic Environment and Their Fate and Removal During Wastewater Treatment”, Science of the Total Environment, Vol. 473–474, pp. 619–641.
  • Matamoros, V., Salvadó, V., 2013, “Evaluation of a Coagulation/flocculation-lamellar Clarifier and Filtration-UV-chlorination Reactor for Removing Emerging Contaminants at Full-scale Wastewater Treatment Plants in Spain”, Journal of Environmental Management, Vol. 117, pp. 96–102.
  • Ngo, H., Guo,W., Vigneswaran, S., Chapter 8:Membrane Processes Forwater Reclamation and Reuse. In: Zhang, T.C., Surampalli, R.Y., Vigneswaran, S., Tyagi, R.D., Ong, S.L., Kao, C.M., editors. 2012, “Membrane Technology and Environmental Applications”, USA: American Society of Civil Engineers (ASCE). pp. 239–75.
  • Pruden, A., Pei, R., Storteboom, H., Carlson, K.H., 2006, “Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado”, Environmental Science & Technology, Vol. 40 (23), pp. 7445–7450.
  • Radjenovic, J., Petrovic, M., Barceló, D., 2009, “Fate and Distribution of Pharmaceuticals in Waste-Water and Sewage Sludge of The Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment”, Water Research, Vol. 43 (3), pp. 831–841.
  • Radjenovic, J., Petrovic, M., Barceló, D., 2007, “Analysis of Pharmaceuticals in Wastewater and Removal Using a Membrane Bioreactor”, Analytical and Bioanalytical Chemistry, Vol. 387 (4), pp. 1365–1377.
  • Reungoat, J., Escher, B.I., Macova, M., Keller, J., 2011, “Biofiltration of Wastewater Treatment Plant Effluent: Effective Removal of Pharmaceuticals and Personal Care Products and Reduction of Toxicity”, Water Research, Vol. 45 (9), pp. 2751–2762.
  • Roh, H., Subramanya, N., Zhao, F., Yu, C.P, Sandt, J., Chu, K-H., 2009, “Biodegradation Potential of Wastewater Micropollutants by Ammonia-Oxidizing Bacteria”, Chemosphere, Vol. 77 (8), pp. 1084–1089.
  • Rossner, A., Snyder, S.A., Knappe, D.R.U., 2009, “Removal of Emerging Contaminants of Concern by Alternative Adsorbents”, Water Research, 43 (15), pp. 3787–3796.
  • Schäfer, A.I., Akanyeti, I., Semião, A.J.C., 2011, “Micropollutant Sorption to Membrane Polymers: a Review of Mechanisms for Estrogens”, Advances in Colloid and Interface Science, Vol. 164, pp. 100–117.
  • Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., et al., 2007, “Role of Membranes and Activated Carbon in The Removal of Endocrine Disruptors and Pharmaceuticals”, Desalination, Vol. 202, pp. 156–181.
  • Su{rez, S., Lema, J.M., Omil, F., 2009, “Pre-treatment of Hospital Wastewater by Coagulation– Flocculation and Flotation”, Bioresource Technology, Vol. 100 (7), pp. 2138–2146.
  • Sui, Q., Huang, J., Deng, S., Yu, G., Fan, Q., 2010, “Occurrence and Removal of Pharmaceuticals, Caffeine and DEET in Wastewater Treatment Plants of Beijing, China”, Water Research, Vol. 44 (2), pp. 417–426.
  • Thuy, P.T., Moons, K., Van Dijk, J.C., Viet Anh, N., Van der Bruggen, B., 2008, “To What Extent are Pesticides Removed from Surface Water During Coagulation–Flocculation”, Water and Environment Journal, Vol. 22 (3), pp. 217–223.
  • Trinh, T., van den Akker, B., Stuetz, R.M., Coleman, H.M., Le-Clech, P., Khan, S.J., 2012,.”Removal of trace organic chemical contaminants by a membrane bioreactor”, Water Science and Technology, Vol. 66 (9), pp. 1856–1863.
  • Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D., 2010, “Hospital Effluents as a Source of Emerging Pollutants: an Overview of Micropollutants and Sustainable Treatment Options”, Journal of Hydrology,Vol. 389 (3), pp. 416–428.
  • Vieno, N., Tuhkanen, T., Kronberg, L., 2006, “Removal of Pharmaceuticals in Drinking Water Treatment: Effect of Chemical Coagulation”, Environmental Technology,Vol. 27 (2), pp. 183– 192.
  • Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, “Fate of Endocrine-disruptor, Pharmaceutical, and Personal Care Product Chemicals During Simulated Drinking Water Treatment Processes”, Environmental Science & Technology, Vol. 39 (17), pp. 6649–6663.
  • Yangali-Quintanilla, V., Maeng, S.K., Fujioka, T., Kennedy, M., Li, Z., Amy, G., 2011, “Nanofiltration vs. Reverse Osmosis for The Removal of Emerging Organic Contaminants in Water Reuse”, Desalination and Water Treatment, Vol. 34, pp. 50–56.

Atık Sularda Mikrokirletici Giderimi İçin Alternatif Arıtımlar

Year 2017, Volume: 5 Issue: 2, 133 - 143, 01.06.2017
https://doi.org/10.15317/Scitech.2017.77

Abstract

Mikro kirleticilerin sucul ortamlarda bulunması hem canlılar hem de çevre için endişe verici bir

çevre sorunu haline gelmiştir. Hızla ortaya çıkan/gelişen kirleticiler olarak da adlandırılan mikro

kirleticiler doğal maddelerden ve giderek artan çeşitli antropojenik olaylardan meydana gelmektedir.

Mikrokirleticiler farmasötikler, kişisel bakım ürünleri, steroid hormonlar, endüstriyel kimyasallar,

pestisitler, poliaromatik hidrokarbonlar ve son zamanlarda görülen diğer bileşiklerden oluşmaktadır. Bu

kirleticiler farklı su kaynaklarında genellikle birkaç ng /L ile μg/ L arasında değişen çok düşük konsantrasyonlarda bulunmaktadır. Dünyadaki mevcut birçok Atıksu Arıtma Tesisi (AAT) özellikle

mikro kirleticileri gidermek için tasarlanmamıştır. Mikro kirleticilerin düşük konsantrasyonda

bulunmaları ve çok çeşitli olmaları arıtma prosesleri boyunca belirleme ve analiz prosedürlerini

zorlaştırmaktadır. Ayrıca, mikro kirleticilerin AAT’lerine sürekli olarak gelmeleri ve birçok mikro

kirleticinin kararlı yapıya sahip olması bu kirleticilerin yeteri kadar giderilmesini zorlaştırmaktadır. Bu

sebeple, mikro kirleticilerin birçoğu bilinmeyen konsantrasyonları ile beraber AAT’lerinden sucul

çevrelere geçmektedir. Sucul ortamlarda ciddi seviyelerde mikro kirletici oluşumları kısa vadeli ve uzun

vadeli toksisiteyi de içeren endokrin bozucu etkiler gibi bir dizi olumsuz etkiler ile beraber sucul

ekosistemleri bozmaktadır. Olumsuz etkileri bilinen mikro kirleticilerin yanı sıra canlı organizmalar

üzerindeki etkileri hala bilinmeyen çok sayıda mikro kirletici de vardır. Sonuç olarak bu kirleticilerin

giderimi, hem çevresel ekosistemlerin hem de insan sağlığının korunması için büyük bir önem

taşımaktadır. Mikro kirleticilerin gideriminde klasik yöntemlerin yetersiz olduğu göz önünde

bulundurulursa daha iyi giderim verimleri için koagülasyon – flokülasyon, aktif karbon adsorpsiyonu

(toz aktif karbon ve granül aktif karbon), ileri oksidasyon prosesleri (İOP), membran prosesleri ve

membran biyoreaktörü içeren diğer alternatif arıtma yöntemleri uygulanabilir.

Bu çalışmada; alternatif arıtma yöntemleri ve her bir arıtma yönteminin farklı mikro kirleticiler

üzerindeki giderim verimleri araştırılarak, bütün alternatif arıtım yöntemleri mikro kirletici giderim

verimleri bakımından birbirleri ile kıyaslanmıştır.

References

  • Alexander, J.T., Hai, F.I., Al-aboud, T.M.., 2012, “Chemical Coagulation-Based Processes for Trace Organic Contaminant Removal: Current State And Future Potential” Journal of Environmental Management, Vol. 111, pp. 195–207.
  • Asakura, H., Matsuto T., 2009, “ Experimental Study of Behavior of Endocrine-Disrupting Chemicals in Leachate Treatment Process and Evaluation of Removal Efficiency”, Waste Management, Vol. 29, pp.1852–1859.
  • Beier, S., Cramer, C., Koster, S., Mauer, C., Palmowski, L., Schroder, H., et al., 2011, “Full Scale Membrane Bioreactor Treatment of Hospital Wastewater as Forerunner for Hot-spot Wastewater Treatment Solutions in High Density Urban Areas”, Water Science and Technology, Vol. 63 (1), pp. 66–71.
  • Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A., Siegrist, H., 2012, “Removal of Micropollutants in Municipal Wastewater Treatment Plants by Powder-Activated Carbon”, Water Science and Technology Vol., 66, pp. 2115–2121.
  • Bolong, N., Ismail, A.F., Salim, M.R., Matsuura, T., 2009, “ A Review of The Effects of Emerging Contaminants in Wastewater and Options for Their Removal”, Desalination, Vol. 239, pp. 229– 46.
  • Choi, K.J., Kim S.G., Kim S.H., 2008, “Removal of Antibiotics by Coagulation and Granular Activated Carbon Filtration”, Journal of Hazardous Materials, Vol. 151, pp. 38–43.
  • Fent, K., Weston, A.A, Carminada, D., 2006, “Ecotoxicology of Human Pharmaceuticals”, Aquatic Toxicology , Vol. 76 (2), pp. 122–159.
  • Garcia, N., Moreno, J., Cartmell, E., Rodriguez-Roda, I., Judd, S., 2013, “The Application of Microfiltration-Reverse Osmosis/Nanofiltration to Trace Organics Removal for Municipal Wastewater Reuse” Environmental Technology, Vol. 34 (24), pp. 3183–3189.
  • Gerrity, D., Gamage, S., Holady, J.C., Mawhinney, D.B., Quinones, O., Trenholm, R.A., et al., 2011, “Pilot-scale Evaluation of Ozone and Biological Activated Carbon for Trace Organic Contaminant Mitigation and Disinfection”, Water Research, Vol. 45 (5), pp. 2155–2165.
  • Grover, D.P., Zhou, J.L., Frickers, P.E., Readman, J.W., 2011, “Improved Removal of Estrogenic and Pharmaceutical Compounds in Sewage Effluent by Full Scale Granular Activated Carbon: Iimpact on Receiving River Water”, Journal of Hazardous Materials, Vol. 185 (2), pp. 1005– 1011.
  • Hern{ndez-Leal, L., Temmink, H., Zeeman, G., Buisman, C.J.N., 2011, “Removal of Micropollutants from Aerobically Treated Grey Water via Ozone and Activated Carbon”, Water Research, Vol. 45 (9), pp. 2887–2896.
  • Hollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., McArdell, C.S., Ort, C., et al., 2009, “Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-scale Post-ozonation Followed by Sand Filtration”, Environmental Science & Technology, Vol. 43 (20), pp. 7862–7869.
  • Jermann, D., Pronk, W., Boller, M., Schäfer, A.I., 2009, “The Role of NOM Fouling for The Retention of Estradiol and Ibuprofen During Ultrafiltration”, Journal of Membrane Science, Vol. 329, pp. 75–84.
  • Kim, I., Yamashita, N., Tanaka, H., 2009, “ Performance of UV and UV/H2O2 Processes for The Removal of Pharmaceuticals Detected in Secondary Effluent of a Sewage Treatment Plant in Japan”, Journal of Hazardous Materials, Vol. 166 (2), pp. 1134–1140.
  • Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., McArdell, C.S., 2012, “Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination”, Environmental Science & Technology, Vol. 46 (3), pp. 1536–1545.
  • Kovalova, L., Siegrist, H., von Gunten, U., Eugster, J., Hagenbuch, M., Wittmer, A., et al., 2013, “Elimination of Micropollutants During Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV”, Environmental Science & Technology, Vol. 47 (149, pp. 7899–7908.
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang Xiaochang C., 2014, “A Review on The Occurrence of Micropollutants in The Aquatic Environment and Their Fate and Removal During Wastewater Treatment”, Science of the Total Environment, Vol. 473–474, pp. 619–641.
  • Matamoros, V., Salvadó, V., 2013, “Evaluation of a Coagulation/flocculation-lamellar Clarifier and Filtration-UV-chlorination Reactor for Removing Emerging Contaminants at Full-scale Wastewater Treatment Plants in Spain”, Journal of Environmental Management, Vol. 117, pp. 96–102.
  • Ngo, H., Guo,W., Vigneswaran, S., Chapter 8:Membrane Processes Forwater Reclamation and Reuse. In: Zhang, T.C., Surampalli, R.Y., Vigneswaran, S., Tyagi, R.D., Ong, S.L., Kao, C.M., editors. 2012, “Membrane Technology and Environmental Applications”, USA: American Society of Civil Engineers (ASCE). pp. 239–75.
  • Pruden, A., Pei, R., Storteboom, H., Carlson, K.H., 2006, “Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado”, Environmental Science & Technology, Vol. 40 (23), pp. 7445–7450.
  • Radjenovic, J., Petrovic, M., Barceló, D., 2009, “Fate and Distribution of Pharmaceuticals in Waste-Water and Sewage Sludge of The Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment”, Water Research, Vol. 43 (3), pp. 831–841.
  • Radjenovic, J., Petrovic, M., Barceló, D., 2007, “Analysis of Pharmaceuticals in Wastewater and Removal Using a Membrane Bioreactor”, Analytical and Bioanalytical Chemistry, Vol. 387 (4), pp. 1365–1377.
  • Reungoat, J., Escher, B.I., Macova, M., Keller, J., 2011, “Biofiltration of Wastewater Treatment Plant Effluent: Effective Removal of Pharmaceuticals and Personal Care Products and Reduction of Toxicity”, Water Research, Vol. 45 (9), pp. 2751–2762.
  • Roh, H., Subramanya, N., Zhao, F., Yu, C.P, Sandt, J., Chu, K-H., 2009, “Biodegradation Potential of Wastewater Micropollutants by Ammonia-Oxidizing Bacteria”, Chemosphere, Vol. 77 (8), pp. 1084–1089.
  • Rossner, A., Snyder, S.A., Knappe, D.R.U., 2009, “Removal of Emerging Contaminants of Concern by Alternative Adsorbents”, Water Research, 43 (15), pp. 3787–3796.
  • Schäfer, A.I., Akanyeti, I., Semião, A.J.C., 2011, “Micropollutant Sorption to Membrane Polymers: a Review of Mechanisms for Estrogens”, Advances in Colloid and Interface Science, Vol. 164, pp. 100–117.
  • Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., et al., 2007, “Role of Membranes and Activated Carbon in The Removal of Endocrine Disruptors and Pharmaceuticals”, Desalination, Vol. 202, pp. 156–181.
  • Su{rez, S., Lema, J.M., Omil, F., 2009, “Pre-treatment of Hospital Wastewater by Coagulation– Flocculation and Flotation”, Bioresource Technology, Vol. 100 (7), pp. 2138–2146.
  • Sui, Q., Huang, J., Deng, S., Yu, G., Fan, Q., 2010, “Occurrence and Removal of Pharmaceuticals, Caffeine and DEET in Wastewater Treatment Plants of Beijing, China”, Water Research, Vol. 44 (2), pp. 417–426.
  • Thuy, P.T., Moons, K., Van Dijk, J.C., Viet Anh, N., Van der Bruggen, B., 2008, “To What Extent are Pesticides Removed from Surface Water During Coagulation–Flocculation”, Water and Environment Journal, Vol. 22 (3), pp. 217–223.
  • Trinh, T., van den Akker, B., Stuetz, R.M., Coleman, H.M., Le-Clech, P., Khan, S.J., 2012,.”Removal of trace organic chemical contaminants by a membrane bioreactor”, Water Science and Technology, Vol. 66 (9), pp. 1856–1863.
  • Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D., 2010, “Hospital Effluents as a Source of Emerging Pollutants: an Overview of Micropollutants and Sustainable Treatment Options”, Journal of Hydrology,Vol. 389 (3), pp. 416–428.
  • Vieno, N., Tuhkanen, T., Kronberg, L., 2006, “Removal of Pharmaceuticals in Drinking Water Treatment: Effect of Chemical Coagulation”, Environmental Technology,Vol. 27 (2), pp. 183– 192.
  • Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005, “Fate of Endocrine-disruptor, Pharmaceutical, and Personal Care Product Chemicals During Simulated Drinking Water Treatment Processes”, Environmental Science & Technology, Vol. 39 (17), pp. 6649–6663.
  • Yangali-Quintanilla, V., Maeng, S.K., Fujioka, T., Kennedy, M., Li, Z., Amy, G., 2011, “Nanofiltration vs. Reverse Osmosis for The Removal of Emerging Organic Contaminants in Water Reuse”, Desalination and Water Treatment, Vol. 34, pp. 50–56.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bilgehan Nas This is me

Taylan Dolu This is me

Havva Ateş This is me

M.emin Argun This is me

Esra Yel

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Nas, B., Dolu, T., Ateş, H., Argun, M., et al. (2017). TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 5(2), 133-143. https://doi.org/10.15317/Scitech.2017.77
AMA Nas B, Dolu T, Ateş H, Argun M, Yel E. TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER. sujest. June 2017;5(2):133-143. doi:10.15317/Scitech.2017.77
Chicago Nas, Bilgehan, Taylan Dolu, Havva Ateş, M.emin Argun, and Esra Yel. “TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5, no. 2 (June 2017): 133-43. https://doi.org/10.15317/Scitech.2017.77.
EndNote Nas B, Dolu T, Ateş H, Argun M, Yel E (June 1, 2017) TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5 2 133–143.
IEEE B. Nas, T. Dolu, H. Ateş, M. Argun, and E. Yel, “TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER”, sujest, vol. 5, no. 2, pp. 133–143, 2017, doi: 10.15317/Scitech.2017.77.
ISNAD Nas, Bilgehan et al. “TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5/2 (June 2017), 133-143. https://doi.org/10.15317/Scitech.2017.77.
JAMA Nas B, Dolu T, Ateş H, Argun M, Yel E. TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER. sujest. 2017;5:133–143.
MLA Nas, Bilgehan et al. “TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 5, no. 2, 2017, pp. 133-4, doi:10.15317/Scitech.2017.77.
Vancouver Nas B, Dolu T, Ateş H, Argun M, Yel E. TREATMENT ALTERNATIVES FOR MICROPOLLUTANT REMOVAL IN WASTEWATER. sujest. 2017;5(2):133-4.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz