Research Article
BibTex RIS Cite

The Effect of 0.15 and 0.30 mol CuO Additions on the Electrical Properties of Nickel Manganite-based NTC Thermistors

Year 2017, Volume: 5 Issue: 2, 239 - 250, 01.06.2017
https://doi.org/10.15317/Scitech.2017.85

Abstract

A decrease in electrical resistance with increasing temperature is the characteristic feature

of NTC thermistor utilized as temperature sensors in industrial applications. Nickel manganite is used

as one of the main compositions for application of NTC thermistors. The electrical properties of

nickel manganite based NTC thermistors are altered by the addition of additives such as cobalt oxide,

iron oxide, chromium oxide and copper oxide etc. In this study; the effect of copper oxide addition on

the electrical and microstructure properties of nickel manganite based NTC thermistors were

investigated. For this purpose, Ni0.5 Co0.5CuxMn2-xO4 (x=0.15 and 0.30) samples were prepared by

conventional ceramic processing techniques. The samples were sintered at 1300 ˚C for 5 hours. The

addition of CuO plays an important role by increasing the bulk density, improving the microstructure

properties and enhancing the electrical characteristics of NTC thermistors. It was determined that

the relative bulk density of samples was ~97 %. The electrical resistivity (ρ) and material constant ( B )

of Ni0.5 Co0.5 Cu0.15Mn1.85O4 sample were determined as 286 Ω.cm and 3355 K. The values of electrical

resistivity and material constant decreased with increasing CuO content. The electrical resistivity and

material constant of Ni0.5Co0.5Cu0.3Mn1.7O4 sample were calculated as 61 Ω.cm and 3124 K.

References

  • Akash, B.A., Mamlook, R., Mohsen, S. M., 1999, “Multi-Criteria Selection of Electric Power Plants Using Analytical Hierarchy Process”, Electric Power Systems Research, Vol. 52, No. 1, pp. 29-35.
  • Bengisu, M. 2001, Engineering Ceramics, Springer-Verlag, Berlin Heidelberg, Germany, 629 pp.
  • Elbadraoui, E., Baudour, J.L., Bouree, F., Gillot, B., Fritsch, S., Rousset, A., 1997, “Cation Distribution and Mechanism of Electrical Conduction in Nickel-Copper Manganite Spinels”, Solid State Ionics, Vol. 93, pp. 219-225.
  • Fang, D., Chena, C., Winnubst, AJA., 2008, “Preparation and Electrical Properties of FexCu0.10 Ni0.66 Mn2.24−xO4 (0 ≤ x ≤ 0.90) NTC Ceramics”, Journal of Alloys and Compounds, Vol. 454, pp. 286-291.
  • Feteira, A., 2009. “Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective”, Journal of the American Ceramic Society, Vol. 92 (5), pp. 967-983.
  • Gao, H., Ma, C., Sun, B., 2014, “ Preparation and Characterization of NiMn2 O4 Negative Temperature Coefficient Ceramics by Solid-State Coordination Reaction”, Journal of Materials Science: Materials in Electronics, Vol. 25 (9), pp. 3990-3995.
  • Jadhav, R.N., Puri, V., 2010, “ Influence of Copper Substitution on Structural, Electrical and Dielectric Properties of Ni(1−x) CuxMn2 O4 (0 ≤ x ≤ 1) Ceramics”, Journal of Alloys and Compounds, Vol. 507 (1), pp. 151-156.
  • Jadhav, R.N., Mathad, S.N., Puri, V., 2012, “Studies on The Properties of Ni0.6 Cu0.4Mn2 O4 NTC Ceramic due to Fe Doping”, Ceramics International, Vol 38 (6), pp. 5181-5188.
  • Kong, W., Chen, L., Gao, B., Zhang, B., Zhao, P., Ji, G., Chang, A., Jiang, C., 2014, “ Fabrication and Properties of Mn1.56 Co0.96 Ni0.48 O4 Free-standing Ultrathin Chips”, Ceramics International, Vol 40, pp. 8405– 8409.
  • Li, J., Songping, W., Xiaohong, D., Jing, N., 2009, “ZnTiO3 -Based Ceramics Sintered at Low Temperature with Boron Addition for Multilayer Ceramic Capacitor Applications”, Journal of Materials Science: Materials in Electronics, Vol. 20(12), pp. 1186-1192.
  • Li, D-F., Zhao, S-X., Xiong, K., Bao, H-Q., Nan, C-W., 2014, “Aging Improvement in Cucontaining NTC Ceramics Prepared by Co-precipitation Method”, Journal of Alloys and Compounds., Vol. 582, pp. 283-288.
  • Ma, C., Liu, Y., Lu, Y., Gao, H., Qian, H., Ding, J., 2013, “Preparation and Characterization of Ni0.6 Mn2.4 O4 NTC Ceramics by Solid-state Coordination Reaction”, Journal of Materials Science: Materials in Electronics, Vol 24 (12), pp. 5183-5188.
  • Macklen, E.D., 1979, Thermistors, Electrochemical Publications Limited, Scotland, pp. 236
  • Muralidharan, M.N., Rohini, P.R., Sunny, E.K., Dayas, K.R., Seema, A., 2012, “Effect of Cu and Fe Addition on Electrical Properties of Ni–Mn–Co–O NTC Thermistor Compositions”, Ceramics International, Vol 38 (8), pp. 6481-6486.
  • Ngamjarurojana, A., 2009, “Effect of Addition of CuO and Bi2O3 on Low Temperature Sintering of Pb(Zr,Ti)O3 -PbZn1/3 Nb2/3O3 -Pb(Ni1/3 Nb2/3 )O3 Based Ceramics”, Chiang Mai Journal Of Science, Vol 36. (1), pp. 50-58.
  • Park, K., 2005, “Fabrication and Electrical Properties of Mn–Ni–Co–Cu–Si Oxides Negative Temperature Coefficient Thermistors, Journal of the American Ceramic Society, Vol. 88 (4), pp. 862–866.
  • Park, K., Lee, J.K., 2007, “Mn–Ni–Co–Cu–Zn–O NTC Thermistors with High Thermal Stability for Low Resistance Applications”, Scripta Materialia, Vol. 57, pp. 329–332.
  • Park, K. Lee, J.K., 2009, “The Effect of ZnO Content and Sintering Temperature on The Electrical Properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC Thermistors”, Journal of Alloys and Compounds, Vol. 475, pp. 513-517.
  • Suzuki, M., 1980, “A.C. Hopping Conduction in Mn-Co-Ni-Cu Complex Oxide Semiconductors with Spinel Structure”, Journal of Physics and Chemistry of Solids, Vol. 41 (11), pp. 1253-1260.
  • Takao, H., Saito, Y., Aoki, Y., Horibuchi, K., 2006, “Microstructural Evolution of Crystalline-Oriented (K0.5 Na0.5 )NbO3 Piezoelectric Ceramics with a Sintering Aid of CuO”, Journal of the American Ceramic Societ, Vol. 89 (6), pp. 1951-1956.
  • Tsai, C.C., Chu, S.Y., Lu, C.H., 2009, “Doping Effects of CuO Additives on The Properties of Low-Temperature- Sintered PMnN-PZT-based Piezoelectric Ceramics and Their Applications on Surface Acoustic Wave Devices”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56 (3), pp. 660-668.
  • Wang, L., Mao, C., Wang, G., Du, G., Liang, R., Dong, X., 2013, “Effect of CuO Addition on The Microstructure and Electric Properties of Low-Temperature Sintered 0.25PMN-0.40PT-0.35PZ Ceramics”, Journal of the American Ceramic Society, Vol. 96, pp. 24-27.
  • Xiong, K., Zhao, S., Li, D., Bao, H., Nan, C., 2014, “Structure and Electrical Performance of Mn1.5-0.5xCo0.9- 0.3xNi0.6-0.2xCux O4 NTC Ceramics Prepared by Heterogeneous Precipitation”, Journal of Alloys and Compounds, Vol. 606, pp. 273-277.
  • Zhao, C., Wang, B., Yang, P., Winnubst, L., Chen C., 2008, “Effects of Cu and Zn Co-doping on The Electrical Properties of Ni0.5Mn2.5O4 NTC Ceramics”, Journal of the European Ceramic Society, Vol. 28, pp. 35-40.

NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ

Year 2017, Volume: 5 Issue: 2, 239 - 250, 01.06.2017
https://doi.org/10.15317/Scitech.2017.85

Abstract

Endüstriyel uygulamalarda sıcaklık sensörü olarak kullanılan NTC termistörün karakteristik

özelliği, sıcaklığın artmasıyla elektriksel direncinin azalmasıdır. Nikel manganit, NTC termistörler

uygulamalarında ana kompozisyonlardan biri olarak kullanılmaktadır. Nikel manganit esaslı NTC

termistörlerin elektriksel özellikleri, kobalt oksit, demir oksit, krom oksit ve bakır oksit gibi katkı

maddelerinin ilavesiyle değiştirilir. Bu çalışmada bakır oksit katkısının nikel manganit esaslı NTC

termistörlerin elektriksel ve mikroyapı özelliklerine etkisi araştırılmıştır. Bu amaçla Ni0.5 Co0.5 CuxMn2-

xO4 (x=0.15 ve 0.30) stokiometrisine uygun numuneler klasik seramik üretim yöntemi kullanılarak

üretilmiştir. Numuneler 1300 ˚C'de 5 saat sinterlenmiştir. Numunelerin göreceli yığın yoğunluklarının

yaklaşık % 97 olduğu belirlenmiştir. Ni0.5 Co0.5 Cu0.15Mn1.85 O4 numunesi için elektriksel özdirenç (ρ) ve

malzeme sabiti ( B) sırasıyla 286 Ω.cm ve 3355 K olarak bulunmuştur. CuO katkı miktarının

artırılmasıyla ise elektriksel özdirenç ve malzeme sabiti değerlerinin azaldığı saptanmıştır. Ni0.5 Co0.5

Cu0.3Mn1.7 O4 kompozisyonuna ait 1300 ˚C’de sinterlenen numunenin elektriksel özdirenç ve malzeme

sabiti değerlerinin 61 Ω.cm ve 3124 K olduğu bulunmuştur.

References

  • Akash, B.A., Mamlook, R., Mohsen, S. M., 1999, “Multi-Criteria Selection of Electric Power Plants Using Analytical Hierarchy Process”, Electric Power Systems Research, Vol. 52, No. 1, pp. 29-35.
  • Bengisu, M. 2001, Engineering Ceramics, Springer-Verlag, Berlin Heidelberg, Germany, 629 pp.
  • Elbadraoui, E., Baudour, J.L., Bouree, F., Gillot, B., Fritsch, S., Rousset, A., 1997, “Cation Distribution and Mechanism of Electrical Conduction in Nickel-Copper Manganite Spinels”, Solid State Ionics, Vol. 93, pp. 219-225.
  • Fang, D., Chena, C., Winnubst, AJA., 2008, “Preparation and Electrical Properties of FexCu0.10 Ni0.66 Mn2.24−xO4 (0 ≤ x ≤ 0.90) NTC Ceramics”, Journal of Alloys and Compounds, Vol. 454, pp. 286-291.
  • Feteira, A., 2009. “Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective”, Journal of the American Ceramic Society, Vol. 92 (5), pp. 967-983.
  • Gao, H., Ma, C., Sun, B., 2014, “ Preparation and Characterization of NiMn2 O4 Negative Temperature Coefficient Ceramics by Solid-State Coordination Reaction”, Journal of Materials Science: Materials in Electronics, Vol. 25 (9), pp. 3990-3995.
  • Jadhav, R.N., Puri, V., 2010, “ Influence of Copper Substitution on Structural, Electrical and Dielectric Properties of Ni(1−x) CuxMn2 O4 (0 ≤ x ≤ 1) Ceramics”, Journal of Alloys and Compounds, Vol. 507 (1), pp. 151-156.
  • Jadhav, R.N., Mathad, S.N., Puri, V., 2012, “Studies on The Properties of Ni0.6 Cu0.4Mn2 O4 NTC Ceramic due to Fe Doping”, Ceramics International, Vol 38 (6), pp. 5181-5188.
  • Kong, W., Chen, L., Gao, B., Zhang, B., Zhao, P., Ji, G., Chang, A., Jiang, C., 2014, “ Fabrication and Properties of Mn1.56 Co0.96 Ni0.48 O4 Free-standing Ultrathin Chips”, Ceramics International, Vol 40, pp. 8405– 8409.
  • Li, J., Songping, W., Xiaohong, D., Jing, N., 2009, “ZnTiO3 -Based Ceramics Sintered at Low Temperature with Boron Addition for Multilayer Ceramic Capacitor Applications”, Journal of Materials Science: Materials in Electronics, Vol. 20(12), pp. 1186-1192.
  • Li, D-F., Zhao, S-X., Xiong, K., Bao, H-Q., Nan, C-W., 2014, “Aging Improvement in Cucontaining NTC Ceramics Prepared by Co-precipitation Method”, Journal of Alloys and Compounds., Vol. 582, pp. 283-288.
  • Ma, C., Liu, Y., Lu, Y., Gao, H., Qian, H., Ding, J., 2013, “Preparation and Characterization of Ni0.6 Mn2.4 O4 NTC Ceramics by Solid-state Coordination Reaction”, Journal of Materials Science: Materials in Electronics, Vol 24 (12), pp. 5183-5188.
  • Macklen, E.D., 1979, Thermistors, Electrochemical Publications Limited, Scotland, pp. 236
  • Muralidharan, M.N., Rohini, P.R., Sunny, E.K., Dayas, K.R., Seema, A., 2012, “Effect of Cu and Fe Addition on Electrical Properties of Ni–Mn–Co–O NTC Thermistor Compositions”, Ceramics International, Vol 38 (8), pp. 6481-6486.
  • Ngamjarurojana, A., 2009, “Effect of Addition of CuO and Bi2O3 on Low Temperature Sintering of Pb(Zr,Ti)O3 -PbZn1/3 Nb2/3O3 -Pb(Ni1/3 Nb2/3 )O3 Based Ceramics”, Chiang Mai Journal Of Science, Vol 36. (1), pp. 50-58.
  • Park, K., 2005, “Fabrication and Electrical Properties of Mn–Ni–Co–Cu–Si Oxides Negative Temperature Coefficient Thermistors, Journal of the American Ceramic Society, Vol. 88 (4), pp. 862–866.
  • Park, K., Lee, J.K., 2007, “Mn–Ni–Co–Cu–Zn–O NTC Thermistors with High Thermal Stability for Low Resistance Applications”, Scripta Materialia, Vol. 57, pp. 329–332.
  • Park, K. Lee, J.K., 2009, “The Effect of ZnO Content and Sintering Temperature on The Electrical Properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC Thermistors”, Journal of Alloys and Compounds, Vol. 475, pp. 513-517.
  • Suzuki, M., 1980, “A.C. Hopping Conduction in Mn-Co-Ni-Cu Complex Oxide Semiconductors with Spinel Structure”, Journal of Physics and Chemistry of Solids, Vol. 41 (11), pp. 1253-1260.
  • Takao, H., Saito, Y., Aoki, Y., Horibuchi, K., 2006, “Microstructural Evolution of Crystalline-Oriented (K0.5 Na0.5 )NbO3 Piezoelectric Ceramics with a Sintering Aid of CuO”, Journal of the American Ceramic Societ, Vol. 89 (6), pp. 1951-1956.
  • Tsai, C.C., Chu, S.Y., Lu, C.H., 2009, “Doping Effects of CuO Additives on The Properties of Low-Temperature- Sintered PMnN-PZT-based Piezoelectric Ceramics and Their Applications on Surface Acoustic Wave Devices”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56 (3), pp. 660-668.
  • Wang, L., Mao, C., Wang, G., Du, G., Liang, R., Dong, X., 2013, “Effect of CuO Addition on The Microstructure and Electric Properties of Low-Temperature Sintered 0.25PMN-0.40PT-0.35PZ Ceramics”, Journal of the American Ceramic Society, Vol. 96, pp. 24-27.
  • Xiong, K., Zhao, S., Li, D., Bao, H., Nan, C., 2014, “Structure and Electrical Performance of Mn1.5-0.5xCo0.9- 0.3xNi0.6-0.2xCux O4 NTC Ceramics Prepared by Heterogeneous Precipitation”, Journal of Alloys and Compounds, Vol. 606, pp. 273-277.
  • Zhao, C., Wang, B., Yang, P., Winnubst, L., Chen C., 2008, “Effects of Cu and Zn Co-doping on The Electrical Properties of Ni0.5Mn2.5O4 NTC Ceramics”, Journal of the European Ceramic Society, Vol. 28, pp. 35-40.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Berat Yüksel Prıce This is me

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Yüksel Prıce, B. (2017). NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 5(2), 239-250. https://doi.org/10.15317/Scitech.2017.85
AMA Yüksel Prıce B. NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ. sujest. June 2017;5(2):239-250. doi:10.15317/Scitech.2017.85
Chicago Yüksel Prıce, Berat. “NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5, no. 2 (June 2017): 239-50. https://doi.org/10.15317/Scitech.2017.85.
EndNote Yüksel Prıce B (June 1, 2017) NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5 2 239–250.
IEEE B. Yüksel Prıce, “NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ”, sujest, vol. 5, no. 2, pp. 239–250, 2017, doi: 10.15317/Scitech.2017.85.
ISNAD Yüksel Prıce, Berat. “NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5/2 (June 2017), 239-250. https://doi.org/10.15317/Scitech.2017.85.
JAMA Yüksel Prıce B. NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ. sujest. 2017;5:239–250.
MLA Yüksel Prıce, Berat. “NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 5, no. 2, 2017, pp. 239-50, doi:10.15317/Scitech.2017.85.
Vancouver Yüksel Prıce B. NİKEL MANGANİT ESASLI NTC TERMİSTÖRLERİN ELEKTRİKSEL ÖZELLİKLERİNE 0.15 VE 0.30 MOL CuO KATKISININ ETKİSİ. sujest. 2017;5(2):239-50.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz