Research Article
BibTex RIS Cite

The comparison of remote sensing indices in the classification of barley and wheat crops

Year 2024, Volume: 20 Issue: 3, 171 - 197, 30.12.2024

Abstract

The rapid population growth and global climate change in the world bring about issues such as food scarcity and hunger. As in many countries, Turkey is also experiencing an increase in the per capita demand for cereals. In our country, wheat occupies the first rank and barley the second rank in terms of the area planted with cereals. Determining the production quantity of critical crops such as wheat and barley in advance, ensuring no loss in their production, and achieving maximum yield have significant impacts on both national and international economic planning and food security. Remote sensing vegetation indices are used to determine and monitor wheat and barley fields. However, since wheat and barley are similar crops and their growing periods are close, it becomes challenging to distinguish them using remote sensing methods. In this study, wheat and barley fields in the provinces of Balıkesir (Edremit and İvrindi districts), Çanakkale (Ezine, Gelibolu, and Gökçeada districts), Manisa (Turgutlu district), Samsun (Yakakent district), Kayseri (İncesu district), Eskişehir (Sivrihisar district), and Yozgat (Sorgun district) were investigated using remote sensing methods in the years 2022 and 2023. The images of the selected fields were obtained between October 1, 2022, and July 31, 2023, from the Landsat 9 OLI-2/TIRS-2 and Sentinel-2 MSI satellites via the cloud-based Google Earth Engine (GEE) platform. From the obtained images, vegetation indices such as NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), LAI (Leaf Area Index), SAVI (Soil Adjusted Vegetation Index), GCI (Green Chlorophyll Index), GLI (Green Leaf Index), GARI (Green Atmospherically Resistant Index), DVI (Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), RDVI (Ratio Vegetation Index), TGI (Transformed Vegetation Index), VARI (Visible Atmospherically Resistant Index), MCARI (Modified Chlorophyll Absorption Ratio Index), TVI (Triangular Vegetation Index), NDRE (Normalized Difference Red Edge Index), RECI (Red Edge Chlorophyll Index), and CVI (Chlorophyll Vegetation Index) were generated. This study, which includes a comparative analysis of 17 different indices from two different satellites, aimed to determine which index is the most suitable for distinguishing wheat from barley. As a result, it was found that in the differentiation of wheat and barley fields, the GARI index in June from the Landsat 9 OLI-2/TIRS-2 satellite (f=4.98, p=0.03) and the GLI index in May from the Sentinel 2 satellite (f=624.2, p=0.00) were effective.

Thanks

Bu makale, Çanakkale Onsekiz Mart Üniversitesi, Lisans Üstü Eğitim Enstitüsü'nde, Tarım Makinaları ve Teknolojileri Mühendisliği Anabilim Dalı doktora programında yürütülmekte olan " Uzaktan Algılama ve Makine Öğrenmesi Yöntemleri Kullanılarak Ürün Rekolte Tahmini" başlıklı Doktora Tezi kapsamında hazırlanmıştır.

References

  • Abad M.S.J., Abkar A.A. ve Mojaradi B. (2018). Effect of the Temporal Gradient of Vegetation Indices on Early-Season Wheat Classification Using the Random Forest Classifier. Applied Sciences. 8(8):1216. https://doi.org/10.3390/app8081216
  • Ahamed, T., Tian, L., Zhang, Y., ve Ting, K. C. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and bioenergy, 35(7), 2455-2469. https://doi.org/10.1016/j.biombioe.2011.02.028
  • Amani M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M.,Brisco, B. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Ashourloo D., Nematollahi, H., Huete, A., Aghighi, H., Azadbakht, M., Shahrabi, H. S., ve Goodarzdashti, S. (2022). A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images Remote Sensing of Environment, 280, 113206. https://doi.org/10.1016/j.rse.2022.113206
  • Atar B. Gıdamız buğdayın, geçmişten geleceğe yolculuğu. Yalvaç Akademi Dergisi, 2017. - Cilt 2(1), 1-12.
  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., ve Moran, M. S. (2000, July). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the fifth international conference on precision agriculture, Bloomington, MN, USA (Vol. 1619, No. 6).
  • BM Gıda ve Tarım Örgütü (FAO) https://www.fao.org/faostat/en/#data/FBS . 2022.
  • Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., ve Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote sensing of Environment, 81(2-3), 179-193. https://doi.org/10.1016/S0034-4257(01)00342-X
  • Broge, N. H., ve Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote sensing of environment, 76(2), 156-172. https://doi.org/10.1016/S0034-4257(00)00197-8
  • Daughtry, C. S., Walthall, C. L., Kim, M. S., De Colstoun, E. B., ve McMurtrey Iii, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2), 229-239. https://doi.org/10.1016/S0034-4257(00)00113-9
  • Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., ve Braun, H. J. (2022). Global trends in wheat production, consumption and trade. In Wheat improvement: food security in a changing climate (pp. 47-66). Cham: Springer International Publishing.
  • Faqe Ibrahim, G. R., Rasul, A., ve Abdullah, H. (2023). Improving crop classification accuracy with integrated Sentinel-1 and Sentinel-2 data: a case study of barley and wheat. Journal of Geovisualization and Spatial Analysis, 7(2), 22.
  • Fuentes-Peailillo, F., Ortega-Farias, S., Rivera, A., Bardeen, M., ve Moreno, M. (2018, October). Comparison of vegetation indices acquired from RGB and Multispectral sensors placed on UAV. In 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA) (pp. 1-6). IEEE.
  • Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., ve Derry, D. (2002). Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23(13), 2537-2562. https://doi.org/10.1080/01431160110107806.
  • Gitelson, A. A., ve Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Advances in space research, 22(5), 689-692. https://doi.org/10.1016/S0273-1177(97)01133-2.
  • Gitelson, A. A., Gritz, Y., ve Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology, 160(3), 271-282. https://doi.org/10.1078/0176-1617-00887.
  • Gitelson, A. A., Kaufman, Y. J., ve Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7.
  • Hamid, B. Y. ve Ali, S. H. . (2024). Integration Between Satellite Images and Spectral Analysis Using The ASD Device to Distinguish Wheat and Barley Plants. Journal Port Science Research, 6(special), 118–126. https://doi.org/10.36371/port.2023.special.15
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., ve Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2.
  • Huete, A. R., Liu, H. Q., Batchily, K. V., ve Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment, 59(3), 440-451. https://doi.org/10.1016/S0034-4257(96)00112-5.
  • Hunt Jr, E. R., Daughtry, C. S. T., Eitel, J. U., ve Long, D. S. (2011). Remote sensing leaf chlorophyll content using a visible band index. Agronomy journal, 103(4), 1090-1099. https://doi.org/10.2134/agronj2010.0395.
  • Ibrahim, G. R. F., Rasul, A., Abdullah, H. (2022). Integration of Sentinel 1 and Sentinel 2 Data for Crop Classification Improvement: Barley and Wheat as an Example. Preprints 2022, 2022090169. https://doi.org/10.20944/preprints202209.0169.v1.
  • İmamoğlu, A., ve SARI, Z. M. N. (2016). Arpa yetiştiriciliği. Çiftçi Broşürü, (125). Isabella, P., Felix, R., Mariette, V., Claudio, N. ve Wolfgang, W. (2020). Classification of Wheat and Barley Fields Using Sentinel-1 Backscatter. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. 140-143. doi: 10.1109/IGARSS39084.2020.9323560
  • Khanal, S., Kc, K., Fulton, J. P., Shearer, S., ve Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), 3783. ; https://doi.org/10.3390/rs12223783.
  • Lee, W. S. (2015). Plant health detection and monitoring. Hyperspectral Imaging Technology in Food and Agriculture, 275-288
  • Liliane, T. N., ve Charles, M. S. (2020). Factors affecting yield of crops. Agronomy-climate change ve food security, 9
  • Louhaichi, M., Borman, M. M., ve Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65-70. https://doi.org/10.1080/10106040108542184.
  • Mancino, G., Ferrara, A., Padula, A., ve Nolè, A. (2020). Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived vegetation indices in a Mediterranean environment. Remote Sensing, 12(2), 291. https://doi.org/10.3390/rs12020291.
  • Morlin Carneiro, F., Angeli Furlani, C. E., Zerbato, C., Candida de Menezes, P., da Silva Gírio, L. A., ve Freire de Oliveira, M. (2020). Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors. Precision Agriculture, 21, 979-1007
  • Mutanga O. ve Kumar L. Google Earth Engine Applications. Remote Sensing. 2019; 11(5):591. https://doi.org/10.3390/rs11050591
  • Na, S. I., Park, C. W., Cheong, Y. K., Kang, C. S., Choi, I. B., ve Lee, K. D. (2016). Selection of optimal vegetation indices for estimation of barley ve wheat growth based on remote sensing-An application of unmanned aerial vehicle and field investigation data. Korean Journal of Remote Sensing, 32(5), 483-497. https://doi.org/10.7780/kjrs.2016.32.5.7.
  • Nduku, L., Munghemezulu, C., Mashaba-Munghemezulu, Z., Kalumba, A. M., Chirima, G. J., Masiza, W., ve De Villiers, C. (2023). Global research trends for unmanned aerial vehicle remote sensing application in wheat crop monitoring. Geomatics, 3(1), 115-136. https://doi.org/10.3390/geomatics3010006.
  • Nitze, I., Schulthess, U., ve Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79, 3540.
  • Özberk, F., Karagöz, A., Özberk, İ., ve Atlı, A. (2016). Buğday genetik kaynaklarından yerel ve kültür çeşitlerine; Türkiye'de buğday ve ekmek. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(2), 218-233 .
  • Payero, J. O., Neale, C. M. U., ve Wright, J. L. (2004). Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Applied Engineering in Agriculture, 20(3), 385-393 .
  • Peştemalci, V., Dinc, U., YEGˇİNGlL, İ., Kandirmaz, M., Cullu, M. A., Öztürk, N., ve Aksoy, E. (1995). Acreage estimation of wheat and barley fields in the province of Adana, Turkey. Remote Sensing, 16(6), 1075-1085.
  • Qader, S. H., Dash, J., ve Atkinson, P. M. (2018). Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Science of the total Environment, 613, 250-262. https://doi.org/10.1016/j.scitotenv.2017.09.057.
  • Roujean, J. L., ve Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote sensing of Environment, 51(3), 375-384. https://doi.org/10.1016/0034-4257(94)00114-3.
  • Rouse, J. W., Haas, R. H., Schell, J. A., ve Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), 309.
  • Sevinç, M. Y., ve Aktuğ, S. S. (2023). Nüfus artışının yol açtığı sorunlara küresel bakış, Uluslararası Sosyal Bilimler Programları Değerlendirme ve Akreditasyon Derneği (USDAD)).
  • Sezer, S. (2024). Rusya-Ukrayna Savaşı'nın jeopolitik sonuçları. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17(1), 158-180. https://doi.org/10.25287/ohuiibf.1331462.
  • Sishodia, R. P., Ray, R. L., ve Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote sensing, 12(19), https://doi.org/10.3390/rs12193136.
  • Sun, Z., Di, L., Fang, H., ve Burgess, A. (2020). Deep learning classification for crop types in north dakota. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2200-2213 .
  • Taehwan, S., Jong, H, Ko., Seungtaek, J., Jiwoo, K., Kyung-Do, L. ve Sangin, S. (2022). Assimilation of Deep Learning and Machine Learning Schemes into a Remote Sensing-Incorporated Crop Model to Simulate Barley and Wheat Productivities. Remote sensing, 14(21):5443-5443. doi: 10.3390/rs14215443
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., ve Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS journal of photogrammetry and remote sensing, 164, 152-170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150
  • TUİK. 2024. - https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1.
  • Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., ve Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote sensing of environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010.
  • Vincini, M., Frazzi, E. R. M. E. S., ve D’Alessio, P. A. O. L. O. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9, 303-319.
  • Yasamin, A., Hamideh, N., Ali, M., Maryam, N., Farrokh, P. ve Parisa, H. (2021). Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi- and hyper-spectral data (case study: Karaj, Iran). Precision Agriculture, 22(3):1-29. doi: 10.1007/S11119-020-09749-9
  • Wikipedia- Nisan 2024. - https://en.wikipedia.org/wiki/Vegetation_index.
  • Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., ve Loupian, E. (2023). Challenges and opportunities in remote sensing-based crop monitoring: A review. National Science Review, 10(4), nwac290. https://doi.org/10.1093/nsr/nwac290.
  • Xue, J., ve Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017(1), 1353691. https://doi.org/10.1155/2017/1353691.
  • Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., ve Gong, P. (2021). Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sensing, 13(18), 3778. https://doi.org/10.3390/rs13183778
  • Zheng, B., Myint, S. W., Thenkabail, P. S., ve Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112 . https://doi.org/10.1016/j.jag.2014.07.002.
  • Zhou, W., Liu, Y., Ata-Ul-Karim, S. T., Ge, Q., Li, X., ve Xiao, J. (2022). Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods. International Journal of Applied Earth Observation and Geoinformation, 111, 102861 https://doi.org/10.1016/j.jag.2022.102861.

Arpa ve buğday bitkilerinin sınıflandırılmasında uzaktan algılama indislerinin karşılaştırılması

Year 2024, Volume: 20 Issue: 3, 171 - 197, 30.12.2024

Abstract

Dünyadaki hızlı nüfus artışı ve küresel iklim değişikliği beraberinde gıda kıtlığı ve açlık gibi sorunlar getirmektedir. Dünya'da birçok ülkede olduğu gibi Türkiye’de kişi başına hububat ihtiyacı artmaktadır. Ülkemizde hububat yetiştirilen alanların büyük bölümünde birinci sırada buğday, ikinci sırada ise arpa yer almaktadır. Buğday ve arpa gibi kritik ürünlerin üretim miktarının önceden belirlenmesi, bitkinin üretiminde kayıp olmaması ve en yüksek verim elde edilebilmesi, ulusal ve uluslararası ekonomik planlamayı ve gıda güvenliğini etkilemektedir. Arpa ve buğday üretim alanlarının belirlenmesi ve izlenmesi için uzaktan algılama bitki indeksleri kullanılabilmektedir. Ancak buğday ve arpanın benzer bitkiler olması ve yetişme zamanlarının da yakın olması uzaktan algılama yöntemleri ile ayrıştırılmasını güçleştirmektedir. Bu çalışmada, Balıkesir ili Edremit ve İvrindi ilçeleri, Çanakkale ili Ezine, Gelibolu ve Gökçeada ilçeleri, Manisa ili Turgutlu ilçesi, Samsun ili Yakakent ilçesi, Kayseri ili İncesu ilçesi, Eskişehir ili Sivrihisar ilçesi, Yozgat ili Sorgun ilçesinde 2022 ve 2023 yıllarında buğday ve arpa ekilen üretim alanları uzaktan algılama yöntemleri ile incelenmiştir. Belirlenen tarlaların 01 Ekim 2022 ve 31 Temmuz 2023 tarihleri arasındaki görüntüleri bulut tabanlı Google Earth Engine(GEE) platformu ile Landsat 9 OLI-2/TIRS-2 ve Sentinel-2 MSI uydularından elde edilmiştir. Elde edilen görüntülerden NDVI (Normalleştirilmiş Fark Bitki İndeksi), EVI (Geliştirilmiş Bitki İndeksi), LAI (Yaprak Alan İndeksi), SAVI (Toprak Düzeltilmiş Bitki İndeksi), GCI (Yeşil Klorofil İndeksi), GLI (Yeşil Yaprak İndeksi), GARI (Yeşil Atmosfer Dirençli İndeks), DVI (Fark Bitki İndeksi), GNDVI (Yeşil Normalleştirilmiş Fark Bitki İndeksi), RDVI (Oranlı Bitki İndeksi), TGI (Dönüştürülmüş Bitki İndeksi), VARI (Görünür Atmosfer Dirençli İndeks), MCARI (Değiştirilmiş Klorofil Emilim Oranı İndeksi), TVI (Üçgen Bitki İndeksi), NDRE (Normalleştirilmiş Fark Kızıl Kenar İndeksi), RECI (Kızıl Kenar Klorofil İndeksi), CVI (Klorofil Bitki İndeksi) bitki indeksleri üretilmiştir. 2 farklı uydudan 17 farklı indisin karşılaştırmalı analizini içeren bu çalışmada, arpa ile buğdayı ayırt edebilecek en uygun indisin hangisi olduğu araştırılmıştır. Çalışma sonucunda buğday ve arpa ekilen tarlaların ayrımında t-testi, Anova ve Lojistik Regresyon analizleri sonucunda Landsat 9 OLI-2/TIRS-2 uydusunda Haziran ayında GARI indeksi (f=4.98, p=0.03), Sentinel 2 uydusunda Mayıs ayında GLI indeksi(f=624.2, p=0.00) etkili olduğu belirlenmiştir.

Thanks

Bu makale, Çanakkale Onsekiz Mart Üniversitesi, Lisans Üstü Eğitim Enstitüsü'nde, Tarım Makinaları ve Teknolojileri Mühendisliği Anabilim Dalı doktora programında yürütülmekte olan " Uzaktan Algılama ve Makine Öğrenmesi Yöntemleri Kullanılarak Ürün Rekolte Tahmini" başlıklı Doktora Tezi kapsamında hazırlanmıştır.

References

  • Abad M.S.J., Abkar A.A. ve Mojaradi B. (2018). Effect of the Temporal Gradient of Vegetation Indices on Early-Season Wheat Classification Using the Random Forest Classifier. Applied Sciences. 8(8):1216. https://doi.org/10.3390/app8081216
  • Ahamed, T., Tian, L., Zhang, Y., ve Ting, K. C. (2011). A review of remote sensing methods for biomass feedstock production. Biomass and bioenergy, 35(7), 2455-2469. https://doi.org/10.1016/j.biombioe.2011.02.028
  • Amani M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M.,Brisco, B. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Ashourloo D., Nematollahi, H., Huete, A., Aghighi, H., Azadbakht, M., Shahrabi, H. S., ve Goodarzdashti, S. (2022). A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images Remote Sensing of Environment, 280, 113206. https://doi.org/10.1016/j.rse.2022.113206
  • Atar B. Gıdamız buğdayın, geçmişten geleceğe yolculuğu. Yalvaç Akademi Dergisi, 2017. - Cilt 2(1), 1-12.
  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., ve Moran, M. S. (2000, July). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the fifth international conference on precision agriculture, Bloomington, MN, USA (Vol. 1619, No. 6).
  • BM Gıda ve Tarım Örgütü (FAO) https://www.fao.org/faostat/en/#data/FBS . 2022.
  • Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., ve Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote sensing of Environment, 81(2-3), 179-193. https://doi.org/10.1016/S0034-4257(01)00342-X
  • Broge, N. H., ve Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote sensing of environment, 76(2), 156-172. https://doi.org/10.1016/S0034-4257(00)00197-8
  • Daughtry, C. S., Walthall, C. L., Kim, M. S., De Colstoun, E. B., ve McMurtrey Iii, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2), 229-239. https://doi.org/10.1016/S0034-4257(00)00113-9
  • Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., ve Braun, H. J. (2022). Global trends in wheat production, consumption and trade. In Wheat improvement: food security in a changing climate (pp. 47-66). Cham: Springer International Publishing.
  • Faqe Ibrahim, G. R., Rasul, A., ve Abdullah, H. (2023). Improving crop classification accuracy with integrated Sentinel-1 and Sentinel-2 data: a case study of barley and wheat. Journal of Geovisualization and Spatial Analysis, 7(2), 22.
  • Fuentes-Peailillo, F., Ortega-Farias, S., Rivera, A., Bardeen, M., ve Moreno, M. (2018, October). Comparison of vegetation indices acquired from RGB and Multispectral sensors placed on UAV. In 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA) (pp. 1-6). IEEE.
  • Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., ve Derry, D. (2002). Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23(13), 2537-2562. https://doi.org/10.1080/01431160110107806.
  • Gitelson, A. A., ve Merzlyak, M. N. (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Advances in space research, 22(5), 689-692. https://doi.org/10.1016/S0273-1177(97)01133-2.
  • Gitelson, A. A., Gritz, Y., ve Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology, 160(3), 271-282. https://doi.org/10.1078/0176-1617-00887.
  • Gitelson, A. A., Kaufman, Y. J., ve Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7.
  • Hamid, B. Y. ve Ali, S. H. . (2024). Integration Between Satellite Images and Spectral Analysis Using The ASD Device to Distinguish Wheat and Barley Plants. Journal Port Science Research, 6(special), 118–126. https://doi.org/10.36371/port.2023.special.15
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., ve Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2.
  • Huete, A. R., Liu, H. Q., Batchily, K. V., ve Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment, 59(3), 440-451. https://doi.org/10.1016/S0034-4257(96)00112-5.
  • Hunt Jr, E. R., Daughtry, C. S. T., Eitel, J. U., ve Long, D. S. (2011). Remote sensing leaf chlorophyll content using a visible band index. Agronomy journal, 103(4), 1090-1099. https://doi.org/10.2134/agronj2010.0395.
  • Ibrahim, G. R. F., Rasul, A., Abdullah, H. (2022). Integration of Sentinel 1 and Sentinel 2 Data for Crop Classification Improvement: Barley and Wheat as an Example. Preprints 2022, 2022090169. https://doi.org/10.20944/preprints202209.0169.v1.
  • İmamoğlu, A., ve SARI, Z. M. N. (2016). Arpa yetiştiriciliği. Çiftçi Broşürü, (125). Isabella, P., Felix, R., Mariette, V., Claudio, N. ve Wolfgang, W. (2020). Classification of Wheat and Barley Fields Using Sentinel-1 Backscatter. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. 140-143. doi: 10.1109/IGARSS39084.2020.9323560
  • Khanal, S., Kc, K., Fulton, J. P., Shearer, S., ve Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sensing, 12(22), 3783. ; https://doi.org/10.3390/rs12223783.
  • Lee, W. S. (2015). Plant health detection and monitoring. Hyperspectral Imaging Technology in Food and Agriculture, 275-288
  • Liliane, T. N., ve Charles, M. S. (2020). Factors affecting yield of crops. Agronomy-climate change ve food security, 9
  • Louhaichi, M., Borman, M. M., ve Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65-70. https://doi.org/10.1080/10106040108542184.
  • Mancino, G., Ferrara, A., Padula, A., ve Nolè, A. (2020). Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived vegetation indices in a Mediterranean environment. Remote Sensing, 12(2), 291. https://doi.org/10.3390/rs12020291.
  • Morlin Carneiro, F., Angeli Furlani, C. E., Zerbato, C., Candida de Menezes, P., da Silva Gírio, L. A., ve Freire de Oliveira, M. (2020). Comparison between vegetation indices for detecting spatial and temporal variabilities in soybean crop using canopy sensors. Precision Agriculture, 21, 979-1007
  • Mutanga O. ve Kumar L. Google Earth Engine Applications. Remote Sensing. 2019; 11(5):591. https://doi.org/10.3390/rs11050591
  • Na, S. I., Park, C. W., Cheong, Y. K., Kang, C. S., Choi, I. B., ve Lee, K. D. (2016). Selection of optimal vegetation indices for estimation of barley ve wheat growth based on remote sensing-An application of unmanned aerial vehicle and field investigation data. Korean Journal of Remote Sensing, 32(5), 483-497. https://doi.org/10.7780/kjrs.2016.32.5.7.
  • Nduku, L., Munghemezulu, C., Mashaba-Munghemezulu, Z., Kalumba, A. M., Chirima, G. J., Masiza, W., ve De Villiers, C. (2023). Global research trends for unmanned aerial vehicle remote sensing application in wheat crop monitoring. Geomatics, 3(1), 115-136. https://doi.org/10.3390/geomatics3010006.
  • Nitze, I., Schulthess, U., ve Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 79, 3540.
  • Özberk, F., Karagöz, A., Özberk, İ., ve Atlı, A. (2016). Buğday genetik kaynaklarından yerel ve kültür çeşitlerine; Türkiye'de buğday ve ekmek. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(2), 218-233 .
  • Payero, J. O., Neale, C. M. U., ve Wright, J. L. (2004). Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Applied Engineering in Agriculture, 20(3), 385-393 .
  • Peştemalci, V., Dinc, U., YEGˇİNGlL, İ., Kandirmaz, M., Cullu, M. A., Öztürk, N., ve Aksoy, E. (1995). Acreage estimation of wheat and barley fields in the province of Adana, Turkey. Remote Sensing, 16(6), 1075-1085.
  • Qader, S. H., Dash, J., ve Atkinson, P. M. (2018). Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Science of the total Environment, 613, 250-262. https://doi.org/10.1016/j.scitotenv.2017.09.057.
  • Roujean, J. L., ve Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote sensing of Environment, 51(3), 375-384. https://doi.org/10.1016/0034-4257(94)00114-3.
  • Rouse, J. W., Haas, R. H., Schell, J. A., ve Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), 309.
  • Sevinç, M. Y., ve Aktuğ, S. S. (2023). Nüfus artışının yol açtığı sorunlara küresel bakış, Uluslararası Sosyal Bilimler Programları Değerlendirme ve Akreditasyon Derneği (USDAD)).
  • Sezer, S. (2024). Rusya-Ukrayna Savaşı'nın jeopolitik sonuçları. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17(1), 158-180. https://doi.org/10.25287/ohuiibf.1331462.
  • Sishodia, R. P., Ray, R. L., ve Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote sensing, 12(19), https://doi.org/10.3390/rs12193136.
  • Sun, Z., Di, L., Fang, H., ve Burgess, A. (2020). Deep learning classification for crop types in north dakota. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2200-2213 .
  • Taehwan, S., Jong, H, Ko., Seungtaek, J., Jiwoo, K., Kyung-Do, L. ve Sangin, S. (2022). Assimilation of Deep Learning and Machine Learning Schemes into a Remote Sensing-Incorporated Crop Model to Simulate Barley and Wheat Productivities. Remote sensing, 14(21):5443-5443. doi: 10.3390/rs14215443
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., ve Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS journal of photogrammetry and remote sensing, 164, 152-170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150
  • TUİK. 2024. - https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1.
  • Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., ve Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote sensing of environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010.
  • Vincini, M., Frazzi, E. R. M. E. S., ve D’Alessio, P. A. O. L. O. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9, 303-319.
  • Yasamin, A., Hamideh, N., Ali, M., Maryam, N., Farrokh, P. ve Parisa, H. (2021). Effects of spatial, temporal, and spectral resolutions on the estimation of wheat and barley leaf area index using multi- and hyper-spectral data (case study: Karaj, Iran). Precision Agriculture, 22(3):1-29. doi: 10.1007/S11119-020-09749-9
  • Wikipedia- Nisan 2024. - https://en.wikipedia.org/wiki/Vegetation_index.
  • Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., ve Loupian, E. (2023). Challenges and opportunities in remote sensing-based crop monitoring: A review. National Science Review, 10(4), nwac290. https://doi.org/10.1093/nsr/nwac290.
  • Xue, J., ve Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017(1), 1353691. https://doi.org/10.1155/2017/1353691.
  • Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., ve Gong, P. (2021). Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sensing, 13(18), 3778. https://doi.org/10.3390/rs13183778
  • Zheng, B., Myint, S. W., Thenkabail, P. S., ve Aggarwal, R. M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112 . https://doi.org/10.1016/j.jag.2014.07.002.
  • Zhou, W., Liu, Y., Ata-Ul-Karim, S. T., Ge, Q., Li, X., ve Xiao, J. (2022). Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods. International Journal of Applied Earth Observation and Geoinformation, 111, 102861 https://doi.org/10.1016/j.jag.2022.102861.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Aykut Durgut 0000-0002-4589-9350

Sarp Korkut Sümer 0000-0001-7679-6154

Emre Özelkan 0000-0002-2031-1610

Early Pub Date December 30, 2024
Publication Date December 30, 2024
Submission Date November 6, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024 Volume: 20 Issue: 3

Cite

APA Durgut, A., Sümer, S. K., & Özelkan, E. (2024). Arpa ve buğday bitkilerinin sınıflandırılmasında uzaktan algılama indislerinin karşılaştırılması. Tarım Makinaları Bilimi Dergisi, 20(3), 171-197.

Journal of Agricultural Machinery Science is a refereed scientific journal published by the Agricultural Machinery Association as 3 issues a year.