Research Article
BibTex RIS Cite

Effects of CaCl2 application on macro and micro nutrient contents of tomato plant grown under NaCl stress conditions in soilless culture

Year 2017, Volume: 5 Issue: 1, 1 - 8, 30.06.2017

Abstract

The objective of this study was to determine the effects of CaCl2 application on some macro and micro nutrient contents in leaves of tomato plant grown under increasing NaCl salt stress conditions in soilless culture. In the study, 9 different nutrient solutions including three doses of NaCl (0, 44.4 and 70.4 mM) and three doses of CaCl2 (0, 6.8 and 16.8 mM) were applied to 3-liter pots having 770 g of peat:perlit mixture according to 3x3 factorial experimental design with three replicates. A tomato (Tybiff Aq seed variety) seedling was planted in each pot. Analysis of N, P, Mg, S, Fe, Mn, Zn and Cu, B were done in the leaf samples taken at the harvest. NaCl at 70.4 mM level significantly increased the content of nitrogen and phosphorus in tomato leaves. The effects of CaCl2 on the content of nitrogen and phosphorus in tomato leaves were not significant and not changed by the levels of NaCl. The effects of NaCl and CaCl2 on the leaf magnesium content were significant and the leaf magnesium content decreased significantly with increasing the dosses of both of them. As the doses of NaCl at 0 and 70.4 mM levels of CaCl2 increased, the sulfur contents of the leaves significantly reduced; on the other hand the increment of NaCl at 6.8 mM level of CaCl2 significantly increased the sulfur content of the leaves. Furthermore, the sulfur content of the leaf significantly decreased as the CaCl2 dose increased at 0 and 44.4 mM level of NaCl doses. Although effect of CaCl2 on leaf iron content is insignificant, it was significant at 44,4 mM NaCl level . As the doses of NaCl and CaCl2 increased, leaf manganese content decreased significantly. The effects of NaCl and CaCl2 on leaf zinc content were not found significant. The leaf copper content was significantly reduced by CaCl2, but NaCl did not significantly affect the copper content of the leaves. The effect of CaCl2 on the leaf boron content differentiated depend on the NaCl doses. Leaf boron content increased significantly with increasing CaCl2 dose at 0 mM level of NaCl; on the other hand, the leaf boron content decreased significantly with increasing CaCl2 dose at 70,4 mM level of NaCl dose. In general, as NaCl doses increased, the leaf boron content decreased significantly.

References

  • Adams P, 2002. Nutritional control in hydroponics, In: Savvas D, Passam HC (Eds) Hydroponic Production of Vegetables and Ornamentals, Embryo Publications, Athens, Greece, pp 211-261. Alpaslan M, Güneş A, Taban S, Erdal İ, Tarakcıoğlu C, 1998. Tuz stresinde çeltik ve buğday çeşitlerinin kalsiyum, fosfor, demir, bakır, çinko, ve mangan içeriklerindeki değişmeler. Turkish Journal of Agriculture and Forestry 22: 227-233. Arshi A, Abdin MZ, Iqbal M, 2006. Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Scientia Horticulturae 111: 84-90. Bayraklı F, 1987. Toprak ve Bitki Analizleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi. O.M.Ü Yayın No:17, Samsun. Bloom-Zandstra G, Lampe JE, 1983. The effect of chloride and sulphate salts on the nitrate content in lettuce plants Lettuce sativa L. Journal of Plant Nutrition 6:611-628. Botella M.A., Rosado, A., Bressan, R.A. ve Hasegawa, P.M., 2005. Plant Adaptive Responses to Salinity Stress, Plant Abiotic Stress, Blackwell Publishing Ltd., 270p. Busch DS, 1995. Calcium regulation in plant cell and his role in signalling. Annual Review of Plant Biology 46, 95-102. Cerda A, Pardines J, Botella MA, Martinez V, 1995. Osmotic sensitivity in relation to salt sensitivity in germination of barleyseeds. Plant Cell and Environment 9: 721-725. Chavan PD, Karadge, BA, 1980. Influence of salinity on mineral nutrition of peanut (Arachis hyogea L.). Plant and Soil 54: 5-13. Dajic, Z, 2006. Salt Stress, Physiology and Molecular Biology of Stress Tolerance in Plants, ISBN-13 978-1-4020-4224-9, Dordrecht, The Netherlands, 345p. Del Amor FM, Marcelis LF, 2006. Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants. Scientia Horticulturae 111, 17-23. Dell’Amico C, Masciandaro G, Ganni A, Ceccanti B, Garcia C, Hernandez T, Costa F, 1994. Effects of specific humic fractions on plant growth, In Humic Substances in the Global Environment and Implications on Human Health; Senesi, N., Milano, T.M., Eds.; Elsevier Science; Amsterdam, The Netherlands, pp. 563-566. Ehret DL, Remann RE, Harvey BL, Cipywnyk A, 1990. Salinity-induced calcium deficiencies in wheat and barley. Plant and Soil 128, 143-151. Esmaili EE, Kapourchal SA, Malakouti MJ, Homaee M, 2008. Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil and Environment 54 (12), 537–546. Frechilla S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio-Tejo P, 2001. Pea responses to saline stress is affected by the source of nitrogen nutrition (amMonium or nitrate). Plant. Growth Regulation 35:171-179. Grattan SV, Grieve CM, 1999. Mineral nutrient acquisition and response by plants grown in saline environments, In: Pessarakli M. (ed.): Handbook pf plant and crop stress, Marcel Dekker, New York: 203-229. Hasan NAK, Drew JW, Knudsen D, Olson RA, 1970. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn: II. Corn (Zea mays L.). Agronomy Journal 62: 46-48. Hirschi KD, 2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology 136:2438-2442. Ho LC, Belda R, Brown M, Andrews J, Adams P, 1993. Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. Journal of Experimental Botany 44, 509-518. Hochmuth G, Maynard D, Vavrina C, Hanlon E, Simonne E, 2004. Plant Tissue Analysis and Interpretation for Vegetables Crops in Florida, HS964, Gainesville: University of Florida Institute of Food and Agricultural Sciences, Available at: : http:// edis.ifas.ufl.edu/pdffiles/EP/EP08100. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R, 2007. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turkish Journal of Botany 31: 245–251. Jaleel CA, Kishorekumar A, Manivannan P, Sankar B, Gomathinayagam M, Rajaram P, 2008. Salt stress mitigation by calcium chloride in Phyllanthus amarus. Acta Botanica Croatia 67(1): 53–62. Kacar B, Katkat VA, 2010. Bitki Besleme. Nobel Yayın No:849, Fen Bilimleri: 30, 5. Baskı Nobel Yayıncılık, Ankara. Kacar B, 1994. Bitki ve Toprağın Kimyasal Analizleri: III, Toprak Analizleri, Ankara Üniversitesi, Ziraat Fakültesi, Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara. Kaya C, Kirnak H, Higgs D, Saltali K, 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae 93, 65-74. Kocaçalışkan İ, 2003. Bitki Fizyolojisi, DPÜ Fen-Edebiyat Fakültesi Yayını, 420. Liu J, Zhu JK, 1998. A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945. Lutts S, KinetM JM, Bouharmont J, 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78: 389-398. Munns R, 2002, Salinity, Growth and Psytohormones Salinity, Environment-Plants-Molecules, Published by Kluwer Academic Publishers, ISBN: 1-4020-0492-3, Dordrecht, The Netherlands, 522p. Renault S, 2005. Response of red-oiser dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. Physiologi Plantarum 123: 75-81. Rengel Z, 1992. The role of calcium in salt toxicity. Plant Cell and Environment 15:625-632. Russo RO, Berlyn, GP, 1990. The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture 1: 19-42. Saure MC, 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.) - a calcium- or a stress-related disorder?. Scientia Horticulturae 90: 193-208. Shannon MC, Grieve CM, Francois LC, 1994. Whole-plant response to salinity, In: Plant Environ., Interact. (Ed.: R.E.Wilkinson), M. Dekker Inc. N.Y., pp 199-244. Sonneveld C, Straver N, 1994. Nutrient solutions for vegetables and flowers grown in water or substrates, (10th Edn) Serie, Voedingsoplossingen Glasstuinbouw, No:8, PBG Naaldwijk-PBG Aalsmeer, The Netherlands, 45 pp. Tanaka A, 1967. Boron Absoption by Crops Plants as Affected by Other Nutritients of the Medium. Soil Science and Plant Nutrition 13: 41-44. Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yağmur B, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany 59: 173-178. Türkmen, Ö., Şensoy, S., Erdal, İ. ve Kabay, T., 2002. Kalsiyum uygulamalarının tuzlu fide yetiştirme ortamlarında domateste çıkış ve fide gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi 12(2): 53-57. Türkmen Ö, Şensoy S, Erdal İ, 2000. Effect of potassium on emergence and seedling growth of cucumber grown in salty conditions. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi 10: 113-117 Walker DJ, Bernal MP, 2004. Plant mineral nutrition and growth in a saline Mediterranean soil amended with organic wastes. Communication of Soil Science and Plant Analyses 35:2495-2514. Walker DJ, Bernal MP, 2008. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology 99:396-403. Yan F, Schubert S, Mengel K, 1992. Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiology 99:415-421. Yokoi S, Bressan RA, Hasegawa PM, 2002. Salt Stress Tolerance of Plants, JIRCAS Working Report, 25-33. Yurtsever N, 1982. Tarla Deneme Tekniği, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Yayın No: 91, Ankara.

Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri

Year 2017, Volume: 5 Issue: 1, 1 - 8, 30.06.2017

Abstract

Bu çalışmanın amacı, topraksız kültürde CaCI2 uygulamasının artan NaCl tuzu stres şartlarında yetiştirilen domates bitkisinin yaprağında bazı makro ve mikro besin element kapsamlarına etkilerini belirlemektir. Çalışmada, NaCl’ün üç (0, 44.4 ve 70,4 mM) ve CaCl2’ün üç (0, 6.8 ve 16.8 mM) dozunu içeren 9 farklı besin çözeltisi, 3x3 faktöriyel desenine göre üç tekerrürlü olacak şekilde 770 g 1:1 torf:perlit karışımı içeren 3 litrelik saksılara uygulanmıştır. Her saksıya bir domates (Tybiff Aq Tohum çeşidi) fidesi dikilmiştir. Hasatta alınan yaprak örneklerinde N, P, Mg, S, Fe, Mn, Zn, Cu ve B analizleri yapılmıştır. NaCl’ün 70,4 mM dozu yaprakta azot ve fosfor kapsamını önemli derecede arttırmıştır. Yaprakta azot ve fosfor kapsamı NaCl seviyelerine bağlı olarak değişmiş; CaCl2’nin etkisi önemli bulunmamıştır. Yaprakta magnezyum kapsamına NaCl ve CaCl2’ün etkileri önemli olup, her ikisinin de dozları arttıkça yaprakta magnezyum kapsamı önemli derecede azalma göstermiştir. CaCl2’nin 0 ve 70,4 mM seviyelerinde NaCl dozu arttıkça yaprakta kükürt kapsamı önemli derecede azalma göstermiş, buna karşın CaCl2’ün 6.8 mM seviyesinde NaCl dozu arttıkça yaprakta kükürt kapsamı önemli derecede artmıştır. Ayrıca NaCl’nin 0 ve 44.4 mM dozlarında CaCl2 dozu arttıkça yaprakta kükürt kapsamı önemli derecede azalma göstermiştir. CaCl2’nin yaprak demir kapsamına etkisi önemsiz olmakla birlikte; 44.4 mM NaCl dozunda yaprak demir kapsamını önemli derecede arttırmıştır. NaCl ve CaCl2 dozları arttıkça yaprakta mangan kapsamı önemli derecede azalma göstermiştir. NaCl ve CaCl2’ün yaprak çinko kapsamına etkileri önemli bulunmamıştır. Yaprak bakır kapsamını CaCl2 önemli derecede azaltmış, fakat NaCl önemli derecede etkilememiştir. Yaprak bor kapsamı NaCl’nin 0 seviyesinde CaCl2 dozu arttıkça önemli derecede azalmış, buna karşın 70.4 mM NaCl seviyesinde CaCl2 dozu arttıkça önemli derecede artmıştır. Genel olarak NaCl dozu arttıkça yaprak bor kapsamı önemli derecede azalma göstermiştir.

References

  • Adams P, 2002. Nutritional control in hydroponics, In: Savvas D, Passam HC (Eds) Hydroponic Production of Vegetables and Ornamentals, Embryo Publications, Athens, Greece, pp 211-261. Alpaslan M, Güneş A, Taban S, Erdal İ, Tarakcıoğlu C, 1998. Tuz stresinde çeltik ve buğday çeşitlerinin kalsiyum, fosfor, demir, bakır, çinko, ve mangan içeriklerindeki değişmeler. Turkish Journal of Agriculture and Forestry 22: 227-233. Arshi A, Abdin MZ, Iqbal M, 2006. Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Scientia Horticulturae 111: 84-90. Bayraklı F, 1987. Toprak ve Bitki Analizleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi. O.M.Ü Yayın No:17, Samsun. Bloom-Zandstra G, Lampe JE, 1983. The effect of chloride and sulphate salts on the nitrate content in lettuce plants Lettuce sativa L. Journal of Plant Nutrition 6:611-628. Botella M.A., Rosado, A., Bressan, R.A. ve Hasegawa, P.M., 2005. Plant Adaptive Responses to Salinity Stress, Plant Abiotic Stress, Blackwell Publishing Ltd., 270p. Busch DS, 1995. Calcium regulation in plant cell and his role in signalling. Annual Review of Plant Biology 46, 95-102. Cerda A, Pardines J, Botella MA, Martinez V, 1995. Osmotic sensitivity in relation to salt sensitivity in germination of barleyseeds. Plant Cell and Environment 9: 721-725. Chavan PD, Karadge, BA, 1980. Influence of salinity on mineral nutrition of peanut (Arachis hyogea L.). Plant and Soil 54: 5-13. Dajic, Z, 2006. Salt Stress, Physiology and Molecular Biology of Stress Tolerance in Plants, ISBN-13 978-1-4020-4224-9, Dordrecht, The Netherlands, 345p. Del Amor FM, Marcelis LF, 2006. Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants. Scientia Horticulturae 111, 17-23. Dell’Amico C, Masciandaro G, Ganni A, Ceccanti B, Garcia C, Hernandez T, Costa F, 1994. Effects of specific humic fractions on plant growth, In Humic Substances in the Global Environment and Implications on Human Health; Senesi, N., Milano, T.M., Eds.; Elsevier Science; Amsterdam, The Netherlands, pp. 563-566. Ehret DL, Remann RE, Harvey BL, Cipywnyk A, 1990. Salinity-induced calcium deficiencies in wheat and barley. Plant and Soil 128, 143-151. Esmaili EE, Kapourchal SA, Malakouti MJ, Homaee M, 2008. Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant Soil and Environment 54 (12), 537–546. Frechilla S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio-Tejo P, 2001. Pea responses to saline stress is affected by the source of nitrogen nutrition (amMonium or nitrate). Plant. Growth Regulation 35:171-179. Grattan SV, Grieve CM, 1999. Mineral nutrient acquisition and response by plants grown in saline environments, In: Pessarakli M. (ed.): Handbook pf plant and crop stress, Marcel Dekker, New York: 203-229. Hasan NAK, Drew JW, Knudsen D, Olson RA, 1970. Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn: II. Corn (Zea mays L.). Agronomy Journal 62: 46-48. Hirschi KD, 2004. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology 136:2438-2442. Ho LC, Belda R, Brown M, Andrews J, Adams P, 1993. Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. Journal of Experimental Botany 44, 509-518. Hochmuth G, Maynard D, Vavrina C, Hanlon E, Simonne E, 2004. Plant Tissue Analysis and Interpretation for Vegetables Crops in Florida, HS964, Gainesville: University of Florida Institute of Food and Agricultural Sciences, Available at: : http:// edis.ifas.ufl.edu/pdffiles/EP/EP08100. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R, 2007. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turkish Journal of Botany 31: 245–251. Jaleel CA, Kishorekumar A, Manivannan P, Sankar B, Gomathinayagam M, Rajaram P, 2008. Salt stress mitigation by calcium chloride in Phyllanthus amarus. Acta Botanica Croatia 67(1): 53–62. Kacar B, Katkat VA, 2010. Bitki Besleme. Nobel Yayın No:849, Fen Bilimleri: 30, 5. Baskı Nobel Yayıncılık, Ankara. Kacar B, 1994. Bitki ve Toprağın Kimyasal Analizleri: III, Toprak Analizleri, Ankara Üniversitesi, Ziraat Fakültesi, Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara. Kaya C, Kirnak H, Higgs D, Saltali K, 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae 93, 65-74. Kocaçalışkan İ, 2003. Bitki Fizyolojisi, DPÜ Fen-Edebiyat Fakültesi Yayını, 420. Liu J, Zhu JK, 1998. A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945. Lutts S, KinetM JM, Bouharmont J, 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78: 389-398. Munns R, 2002, Salinity, Growth and Psytohormones Salinity, Environment-Plants-Molecules, Published by Kluwer Academic Publishers, ISBN: 1-4020-0492-3, Dordrecht, The Netherlands, 522p. Renault S, 2005. Response of red-oiser dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. Physiologi Plantarum 123: 75-81. Rengel Z, 1992. The role of calcium in salt toxicity. Plant Cell and Environment 15:625-632. Russo RO, Berlyn, GP, 1990. The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture 1: 19-42. Saure MC, 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.) - a calcium- or a stress-related disorder?. Scientia Horticulturae 90: 193-208. Shannon MC, Grieve CM, Francois LC, 1994. Whole-plant response to salinity, In: Plant Environ., Interact. (Ed.: R.E.Wilkinson), M. Dekker Inc. N.Y., pp 199-244. Sonneveld C, Straver N, 1994. Nutrient solutions for vegetables and flowers grown in water or substrates, (10th Edn) Serie, Voedingsoplossingen Glasstuinbouw, No:8, PBG Naaldwijk-PBG Aalsmeer, The Netherlands, 45 pp. Tanaka A, 1967. Boron Absoption by Crops Plants as Affected by Other Nutritients of the Medium. Soil Science and Plant Nutrition 13: 41-44. Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yağmur B, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany 59: 173-178. Türkmen, Ö., Şensoy, S., Erdal, İ. ve Kabay, T., 2002. Kalsiyum uygulamalarının tuzlu fide yetiştirme ortamlarında domateste çıkış ve fide gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi 12(2): 53-57. Türkmen Ö, Şensoy S, Erdal İ, 2000. Effect of potassium on emergence and seedling growth of cucumber grown in salty conditions. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi 10: 113-117 Walker DJ, Bernal MP, 2004. Plant mineral nutrition and growth in a saline Mediterranean soil amended with organic wastes. Communication of Soil Science and Plant Analyses 35:2495-2514. Walker DJ, Bernal MP, 2008. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology 99:396-403. Yan F, Schubert S, Mengel K, 1992. Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiology 99:415-421. Yokoi S, Bressan RA, Hasegawa PM, 2002. Salt Stress Tolerance of Plants, JIRCAS Working Report, 25-33. Yurtsever N, 1982. Tarla Deneme Tekniği, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Yayın No: 91, Ankara.
There are 1 citations in total.

Details

Subjects Agricultural Engineering
Journal Section Articles
Authors

Ahmet Korkmaz

Arife Karagöl This is me

Güney Akınoğlu This is me

Ayhan Horuz This is me

Publication Date June 30, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Korkmaz, A., Karagöl, A., Akınoğlu, G., Horuz, A. (2017). Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri. Toprak Bilimi Ve Bitki Besleme Dergisi, 5(1), 1-8.
AMA Korkmaz A, Karagöl A, Akınoğlu G, Horuz A. Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri. tbbbd. June 2017;5(1):1-8.
Chicago Korkmaz, Ahmet, Arife Karagöl, Güney Akınoğlu, and Ayhan Horuz. “Topraksız kültürde CaCl2 uygulamasının NaCl Stres şartlarında yetiştirilen Domates Bitkisinin Makro Ve Mikro Besin Element kapsamına Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi 5, no. 1 (June 2017): 1-8.
EndNote Korkmaz A, Karagöl A, Akınoğlu G, Horuz A (June 1, 2017) Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 5 1 1–8.
IEEE A. Korkmaz, A. Karagöl, G. Akınoğlu, and A. Horuz, “Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri”, tbbbd, vol. 5, no. 1, pp. 1–8, 2017.
ISNAD Korkmaz, Ahmet et al. “Topraksız kültürde CaCl2 uygulamasının NaCl Stres şartlarında yetiştirilen Domates Bitkisinin Makro Ve Mikro Besin Element kapsamına Etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 5/1 (June 2017), 1-8.
JAMA Korkmaz A, Karagöl A, Akınoğlu G, Horuz A. Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri. tbbbd. 2017;5:1–8.
MLA Korkmaz, Ahmet et al. “Topraksız kültürde CaCl2 uygulamasının NaCl Stres şartlarında yetiştirilen Domates Bitkisinin Makro Ve Mikro Besin Element kapsamına Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 5, no. 1, 2017, pp. 1-8.
Vancouver Korkmaz A, Karagöl A, Akınoğlu G, Horuz A. Topraksız kültürde CaCl2 uygulamasının NaCl stres şartlarında yetiştirilen domates bitkisinin makro ve mikro besin element kapsamına etkileri. tbbbd. 2017;5(1):1-8.