Research Article
BibTex RIS Cite

Convection and accumulation of trifluralin herbicide in the soil in field conditions

Year 2019, Volume: 7 Issue: 1, 1 - 9, 22.07.2019
https://doi.org/10.33409/tbbbd.594995

Abstract

Nowadays, one of the most
important purposes in agricultural areas is to provide high agricultural
production in order to supply the increasing food requirement according to the
increasing population. In this context, many agricultural inputs which are used
in order to get more yield from unit area effect the agricultural production
system negatively. Herbicide is one the most important inputs, pollutes the
natural resources such as water and soil and effects the living creatures by
reaching to the rivers, lakes and seas and underground waters besides several
macro and micro livings or effects the food chain by cumulating in these living
organisms. This research includes the soils to which the irrigation application
is done by the water in the wells in Turgutbey irrigation areas in Thrace
region. Convection and accumulation of trifluralin herbicide in different
layers of the soil were examined. Sampling was done in 16 different points and
3 layers which had different organic matters and structure. Trifluralin
residual amounts were determined in 1200 (max.) ug/L level with 2,4 (min.). The
trifluralin amounts were determined to be higher in the top layers of the
profiles in the soil samples but decline in the concentrations was seen in the
substratum. Besides, the trifluralin concentrations in the soils taken in
spring were determined to be higher than the concentrations in the soil samples
in autumn.

References

  • Arias-Estevez M, Lopes-Periago E, Martines-Karballoe, Simal-Gandara J, Mejusto Jc, Garcia-Rio L, 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment 123: 247–260.
  • Bedos C, Rousseau-Djabri Mf, Flura D, Masson S, Barriuso E, Cellier P, 2002. Rate of pesticide volatilization from soil: an experimental approach with a wind tunnel system applied to trifluralin. Atmospheric Environment 36(39): 5917-5925.
  • Bedos C, Rousseau-Djabri Mf, Gabrielle B, Flura D, Durand B, Barriuso E, Cellier P, 2006. Measurement of trifluralin volatilization in the field: relation to soil residue and effect of soil incorporation. Environmental Pollution 144(3): 958-966.
  • Bengtson RL, Southwick LM, Willis GH, Cater CE, 1990. The influence of subsurface drainage practice on herbicide losses. American Society of Agricultural Engineers 33: 415-419.
  • Berger Bm, Duehlmeıer D, Sıebert Cf, 1999. Tillage effects on persistence and istribution of trifluralin in soil. Journal of Environmental Quality 28 (4):1162-1167.
  • Boivin A, Cherrier R, Michel Schiavon M, 2005. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61 (5): 668-676.
  • Dinç U, Şenol S, Kapur S, Atalay İ, Cangir C, 1995. Türkiye Toprakları. Ç.Ü Ziraat Fakültesi Genel Yayın No: 51 Ders Kitapları Yayın No:12 Adana.
  • Feagley SE, Kim JH, 1995. Adsorption and leaching of cis and tras-permethrin in the soil. Journal of Korean Environmental Science Society 4: 379-386.
  • Francioso O, Bak E, Rossi N, Sequi P, 1992. sorption of atrazine and trifluralin in relation to the physio-chemical characteristics of selected soils. The Science of The Total Environment 123-124: 503-512.
  • Gardner Ds, Branham Be, 2001. Effect of turfgrass cover and irrigation on soil mobility and dissipation of mefenoxam and propiconazole. Journal of Environmental Quality 30: 1612–1618.
  • Grass B, Wenclawiak Bw, Rüdel H, 1994. ınfluence of air velocity, air temperature, and air humidity on the volatilisation of trifluralin from soil. Chemosphere 28 (3): 491-499.
  • Harper LA, White AV, Bruce RR, Thomas AW, Leonard RA, 2000. Soil and microclimate effects on trifluralin volatilization. Soil Science 165 (9): 690-698.
  • Hollingsworth EB, 1980. Volatility of trifluralin from field soil. Weed Science 28(2): 224-228.
  • Johnstone Pk, Jolley Av, Code Gr, Moerkerk Mr, Corbett A, 1998. Degradation of trifluralin in three victorian soils—long-term field trials. Australian Journal of Experimental Agriculture 38(4): 363 – 374.
  • Kim JH, Feagley SE, 1998. Adsorption and leaching of trifluralin, metolachlor, and metribuzin in a commerce soil. Journal of Environmental Science and Health 33(5): 529-546.
  • Kim JH, Feagley SE, 2002. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of louisiana. Journal of Environmental Science and Health, Part B. 37(5): 393-403.
  • Kodesova R, Kocarek M, Kodes V, Drabek O, Kozak J, Hejtmankova K, 2011. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials 186: 540–550.
  • Menges RM, Tamez S, 1974. Movement and persistence of bensulide and trifluralin in irrigated soil. Weed Science 22(1): 67-71.
  • Moore MT, Lizotte RE, Knifht SS, Smith S, Copper CM, 2007. Assessment of pesticide contamination in three Mississippi Delta oxbow lakes using Hyalella azteca. Chemosphere 67(11):2184-2191.
  • Moyer JR, 1979. Soil organic matter, moisture, and temperature: effect on wild oats control with trifluralin. Canadian Journal of Plant Science 59(3): 763-768.
  • Müller K, Magesan GN, Bolan NS, 2007. A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment 120: 93–116.
  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M, 2000. Herbicide application method effects on napropamide complexation with dissolved organic matter. Journal of Environmental Quality 29: 987–994.
  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M, 2000. Herbicide application method effects on napropamide complexation with dissolved organic matter. Journal of Environmental Quality 29: 987–994.
  • Pintar M, Pilk M, Lobnik F, Hudnik V, Zupan M, Carpi E, Evans SP, Trevisan M, 1996. Mobility, leaching and degradation of atrazine in columk and field experiments. Water Management Institute, Hajdrihova 28, 1000 Ljubljana, Slovenia.
  • Querejeta GA, Ramos LM, Hughes EA, Vullo D, Zalts A, Montserrat JM, 2014. Environmental fate of trifluralin, procymidone and chlorpyrifos in small horticultural production units in Argentina. Water, Air, & Soil Pollution 225:1952.
  • Sağlam MT, 1994. Toprak ve Suyun Kimyasal Analiz Yöntemleri. T.Ü. Tekirdağ Ziraat Fakültesi yayınları, Tekirdağ.
  • Savage KE, Barrentine WL, 1969. Trifluralin persistence as affected by depth of soil incorporation. Weed Science 17 (3): 349-352.
  • Southwick LM, Willis GH, Mercado OA, Bengtson RL, 1997. Effect of subsurface drains on runoff losses of metolachlor and trifluralin from mississippi river alluvial soil. Archives of Environmental Contamination and Toxicology 32(1):106-9.
  • Spencer WF, Cliath MM, 1974. Factors affecting vapor loss of trifluralin from soil. Journal of Agricultural and Food Chemistry 22(6): 987-991.
  • Tavares M, Rezende M, 1998. Effect of humic acid on the sorption of trifluralin by soils. Journal of Environmental Science and Health, Part B. 33 (6): 749-767.
  • Tissier C, Morvan C, Bocquené G, Grossel H, James A, Marchand M, 2005. Les bstances prioritaires de la Directive cadre sur l’eau (DCE). Fiches de synthèse RapportIfremer. Erişim Adresi: www.ifremer.fr/delpc/pdf/RAPPORT_FICHES33_SUBSTANCES.pdf
  • Tok HH, 1996. Trakya Bölgesinde Pestisit Kullanımı ve Pestisitlerin Çevre Üzerindeki Olumsuz Etkileri. Trakya Tarım ve Çevre Sempozyumu, Çorlu.
  • Tok HH, 1997. Çevre Kirliliği. T.Ü. Tekirdağ Ziraat Fakültesi, Ders Kitabı, Tekirdağ.

Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi

Year 2019, Volume: 7 Issue: 1, 1 - 9, 22.07.2019
https://doi.org/10.33409/tbbbd.594995

Abstract

Günümüzde tarım alanlarında
en önemli amaçlardan bir tanesi, artan nüfusa ve ona paralel olarak artan gıda
gereksinimi karşılamaya yönelik olarak yüksek tarımsal üretimin sağlanmasıdır.
Bu bağlamda, birim alandan daha fazla verim almak amacı ile tarımda kullanılan
birçok tarımsal girdi, tarımsal üretim sistemini olumsuz etkilemektedir.
Herbisit girdisi bunların en önemlilerinden biri olup başta su ve toprak gibi
doğal kaynakları kirletmesi ve topraktaki kalıntıları ile bir çok makro ve
mikro canlının yanı sıra, topraktan yıkanarak yer altı suyuna ve akarsu, göl ve
deniz gibi su yüzeylerine ulaşarak yaşayan canlıları direkt olarak, ya da bu
canlı organizmalarda birikerek besin zincirini olumsuz etkilemektedir.
Araştırma, Trakya Bölgesi Turgutbey sulama sahasında üreticilerin açtıkları
kuyulardan sağlanan su ile sulama uygulaması yapılan toprakları kapsamaktadır.
Sahaya ait toprakların farklı katmanlarında trifluralin herbisitinin toprakta
taşınımı ve kalıntı olarak birikimi irdelenmiştir. Çalışmada, farklı organik
madde ve bünyeye sahip 16 farklı noktada ve 3 katmanda örnekleme yapılmıştır.
Dört yıllık çalışmada, 2,4 (min.) ile 1200 (max.) ug/L düzeyinde trifluralin
kalıntı miktarları belirlenmiştir. Toprak örneklerinde profillerin üst
katmanlarında trifluralin miktarları daha yüksek olurken alt katlara
inildiğinde konsantrasyonlarda düşme görülmektedir. Ayrıca ilkbaharda alınan
topraklardaki trifluralin konsantrasyonlarının sonbaharda yapılan toprak
örneklemelerindeki konsantrasyonlara oranla daha yüksek olduğu tespit
edilmiştir.

References

  • Arias-Estevez M, Lopes-Periago E, Martines-Karballoe, Simal-Gandara J, Mejusto Jc, Garcia-Rio L, 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment 123: 247–260.
  • Bedos C, Rousseau-Djabri Mf, Flura D, Masson S, Barriuso E, Cellier P, 2002. Rate of pesticide volatilization from soil: an experimental approach with a wind tunnel system applied to trifluralin. Atmospheric Environment 36(39): 5917-5925.
  • Bedos C, Rousseau-Djabri Mf, Gabrielle B, Flura D, Durand B, Barriuso E, Cellier P, 2006. Measurement of trifluralin volatilization in the field: relation to soil residue and effect of soil incorporation. Environmental Pollution 144(3): 958-966.
  • Bengtson RL, Southwick LM, Willis GH, Cater CE, 1990. The influence of subsurface drainage practice on herbicide losses. American Society of Agricultural Engineers 33: 415-419.
  • Berger Bm, Duehlmeıer D, Sıebert Cf, 1999. Tillage effects on persistence and istribution of trifluralin in soil. Journal of Environmental Quality 28 (4):1162-1167.
  • Boivin A, Cherrier R, Michel Schiavon M, 2005. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61 (5): 668-676.
  • Dinç U, Şenol S, Kapur S, Atalay İ, Cangir C, 1995. Türkiye Toprakları. Ç.Ü Ziraat Fakültesi Genel Yayın No: 51 Ders Kitapları Yayın No:12 Adana.
  • Feagley SE, Kim JH, 1995. Adsorption and leaching of cis and tras-permethrin in the soil. Journal of Korean Environmental Science Society 4: 379-386.
  • Francioso O, Bak E, Rossi N, Sequi P, 1992. sorption of atrazine and trifluralin in relation to the physio-chemical characteristics of selected soils. The Science of The Total Environment 123-124: 503-512.
  • Gardner Ds, Branham Be, 2001. Effect of turfgrass cover and irrigation on soil mobility and dissipation of mefenoxam and propiconazole. Journal of Environmental Quality 30: 1612–1618.
  • Grass B, Wenclawiak Bw, Rüdel H, 1994. ınfluence of air velocity, air temperature, and air humidity on the volatilisation of trifluralin from soil. Chemosphere 28 (3): 491-499.
  • Harper LA, White AV, Bruce RR, Thomas AW, Leonard RA, 2000. Soil and microclimate effects on trifluralin volatilization. Soil Science 165 (9): 690-698.
  • Hollingsworth EB, 1980. Volatility of trifluralin from field soil. Weed Science 28(2): 224-228.
  • Johnstone Pk, Jolley Av, Code Gr, Moerkerk Mr, Corbett A, 1998. Degradation of trifluralin in three victorian soils—long-term field trials. Australian Journal of Experimental Agriculture 38(4): 363 – 374.
  • Kim JH, Feagley SE, 1998. Adsorption and leaching of trifluralin, metolachlor, and metribuzin in a commerce soil. Journal of Environmental Science and Health 33(5): 529-546.
  • Kim JH, Feagley SE, 2002. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of louisiana. Journal of Environmental Science and Health, Part B. 37(5): 393-403.
  • Kodesova R, Kocarek M, Kodes V, Drabek O, Kozak J, Hejtmankova K, 2011. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials 186: 540–550.
  • Menges RM, Tamez S, 1974. Movement and persistence of bensulide and trifluralin in irrigated soil. Weed Science 22(1): 67-71.
  • Moore MT, Lizotte RE, Knifht SS, Smith S, Copper CM, 2007. Assessment of pesticide contamination in three Mississippi Delta oxbow lakes using Hyalella azteca. Chemosphere 67(11):2184-2191.
  • Moyer JR, 1979. Soil organic matter, moisture, and temperature: effect on wild oats control with trifluralin. Canadian Journal of Plant Science 59(3): 763-768.
  • Müller K, Magesan GN, Bolan NS, 2007. A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment 120: 93–116.
  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M, 2000. Herbicide application method effects on napropamide complexation with dissolved organic matter. Journal of Environmental Quality 29: 987–994.
  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M, 2000. Herbicide application method effects on napropamide complexation with dissolved organic matter. Journal of Environmental Quality 29: 987–994.
  • Pintar M, Pilk M, Lobnik F, Hudnik V, Zupan M, Carpi E, Evans SP, Trevisan M, 1996. Mobility, leaching and degradation of atrazine in columk and field experiments. Water Management Institute, Hajdrihova 28, 1000 Ljubljana, Slovenia.
  • Querejeta GA, Ramos LM, Hughes EA, Vullo D, Zalts A, Montserrat JM, 2014. Environmental fate of trifluralin, procymidone and chlorpyrifos in small horticultural production units in Argentina. Water, Air, & Soil Pollution 225:1952.
  • Sağlam MT, 1994. Toprak ve Suyun Kimyasal Analiz Yöntemleri. T.Ü. Tekirdağ Ziraat Fakültesi yayınları, Tekirdağ.
  • Savage KE, Barrentine WL, 1969. Trifluralin persistence as affected by depth of soil incorporation. Weed Science 17 (3): 349-352.
  • Southwick LM, Willis GH, Mercado OA, Bengtson RL, 1997. Effect of subsurface drains on runoff losses of metolachlor and trifluralin from mississippi river alluvial soil. Archives of Environmental Contamination and Toxicology 32(1):106-9.
  • Spencer WF, Cliath MM, 1974. Factors affecting vapor loss of trifluralin from soil. Journal of Agricultural and Food Chemistry 22(6): 987-991.
  • Tavares M, Rezende M, 1998. Effect of humic acid on the sorption of trifluralin by soils. Journal of Environmental Science and Health, Part B. 33 (6): 749-767.
  • Tissier C, Morvan C, Bocquené G, Grossel H, James A, Marchand M, 2005. Les bstances prioritaires de la Directive cadre sur l’eau (DCE). Fiches de synthèse RapportIfremer. Erişim Adresi: www.ifremer.fr/delpc/pdf/RAPPORT_FICHES33_SUBSTANCES.pdf
  • Tok HH, 1996. Trakya Bölgesinde Pestisit Kullanımı ve Pestisitlerin Çevre Üzerindeki Olumsuz Etkileri. Trakya Tarım ve Çevre Sempozyumu, Çorlu.
  • Tok HH, 1997. Çevre Kirliliği. T.Ü. Tekirdağ Ziraat Fakültesi, Ders Kitabı, Tekirdağ.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Ülviye Kamburoğlu Çebi

Recep Çakır This is me

Hasan Hayri Tok This is me

Publication Date July 22, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Çebi, Ü. K., Çakır, R., & Tok, H. H. (2019). Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi. Toprak Bilimi Ve Bitki Besleme Dergisi, 7(1), 1-9. https://doi.org/10.33409/tbbbd.594995
AMA Çebi ÜK, Çakır R, Tok HH. Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi. tbbbd. July 2019;7(1):1-9. doi:10.33409/tbbbd.594995
Chicago Çebi, Ülviye Kamburoğlu, Recep Çakır, and Hasan Hayri Tok. “Tarla koşullarında Uygulanan Trifluralin Herbisidinin Toprakta taşınımı Ve Birikimi”. Toprak Bilimi Ve Bitki Besleme Dergisi 7, no. 1 (July 2019): 1-9. https://doi.org/10.33409/tbbbd.594995.
EndNote Çebi ÜK, Çakır R, Tok HH (July 1, 2019) Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi. Toprak Bilimi ve Bitki Besleme Dergisi 7 1 1–9.
IEEE Ü. K. Çebi, R. Çakır, and H. H. Tok, “Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi”, tbbbd, vol. 7, no. 1, pp. 1–9, 2019, doi: 10.33409/tbbbd.594995.
ISNAD Çebi, Ülviye Kamburoğlu et al. “Tarla koşullarında Uygulanan Trifluralin Herbisidinin Toprakta taşınımı Ve Birikimi”. Toprak Bilimi ve Bitki Besleme Dergisi 7/1 (July 2019), 1-9. https://doi.org/10.33409/tbbbd.594995.
JAMA Çebi ÜK, Çakır R, Tok HH. Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi. tbbbd. 2019;7:1–9.
MLA Çebi, Ülviye Kamburoğlu et al. “Tarla koşullarında Uygulanan Trifluralin Herbisidinin Toprakta taşınımı Ve Birikimi”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 7, no. 1, 2019, pp. 1-9, doi:10.33409/tbbbd.594995.
Vancouver Çebi ÜK, Çakır R, Tok HH. Tarla koşullarında uygulanan trifluralin herbisidinin toprakta taşınımı ve birikimi. tbbbd. 2019;7(1):1-9.