Research Article
BibTex RIS Cite

Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri

Year 2020, Volume: 8 Issue: 2, 86 - 97, 30.12.2020
https://doi.org/10.33409/tbbbd.777226

Abstract

Son yıllarda oldukça güncel olan biyokömürün özellikleri, kullanım alanının belirlenmesi ve toprak ortamındaki potansiyel fonksiyonlarının tahmininde kritik öneme sahiptir. Bu çalışmada çeltik saplarından 400℃’de yavaş piroliz yoluyla elde edilen biyokömürün bazı fizikokimyasal özellikleri ileri analitik tekniklerle incelenmiştir. Çalışmada, elde edilen biyokömür materyalinde; verim, uçucu madde (UM) mineral kül içeriği (MKİ), sabit karbon (SK), elementel analizler (C, H, N, S), spektroskopik analizler (FT-IR, 13C NMR, XPS, XRF ve XRD), görüntüleme analizi (SEM-EDX), parçacık boyutu ve spesifik yüzey alanı analizleri yapılmıştır. Elde edilen bu sonuçlara göre, 400 °C'de pirinç sap/samanından üretilen biyokömür, büyük gözeneklere ve orta ila düşük özgül yüzey alanına sahiptir; zayıf kristalik, karbonca zengin, selülozik amorf bir malzemedir ve silvit (KCl) mineralini içermektedir. Bu özellikleri biyokömürün topraklarda karbon stabilizasyonunda kullanımına uygun olabileceğini göstermektedir.

Supporting Institution

Ankara Üniversitesi Bilimsel Araştırmalar ve Proje Destek Birimi

Project Number

17L0447008

Thanks

Bu araştırma, Ankara Üniversitesi Bilimsel Araştırmalar ve Proje Destek Birimi’nin, “17L0447008” kodlu “Çeltik Sapından Elde Edilen Biyokömür Uygulamalarının Çeltik Yetiştiriciliğinde Kadmiyum Biyoyarayışlılığına Etkisi” konulu proje kapsamında gerçekleştirilmiştir. Araştırmada kullanılan cihazlar için, ODTÜ Merkez Laboratuvarları’ndan yararlanılmıştır.

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99:19–33.
  • Angin D, 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128:593–597.
  • Archontoulis VS, Huber I, Miguez F, Thorburn P, Rogovska N, Laird D, 2016. A model for mechanistic and system assessments of biochar effects on soils andcrops and trade-offs. GCB Bioenergy, 8:1028-1045.
  • ASTM D1762-84, 2007. Standard test method for chemical analysis of wood charcoal. Conshohocken, PA: American Society for Testing and Materials.
  • Bagreev A, Bandosz T, Locke D, 2001. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39:1971-1979.
  • Boyabatli O, Nasiry J, Zhou YH, 2019. Crop planning in sustainable agriculture: dynamic farmland allocation in the presence of crop rotation benefits. Manage. Sci., 65(5):1949–2443.
  • Brassard P, Godbout S, Raghavan V, 2016. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J. Environ. Manag., 181:484–497.
  • Brunauer S, Emmett PH, Teller E, 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60:309–319.
  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS, 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol., 107:419–428.
  • Cao X, Ma L, Liang Y, Gao B, Harris W, 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy manure biochar. Environ Sci. Technol., 45:4884–4889.
  • Cao Y, Tan HM, 2002. Effects of cellulase on the modification of cellulose. Carbohydr Res., 337:1291-1296.
  • Chandra S, Medha I, Bhattacharya J, 2020. Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium in soil for timely and controlled release. Science of the Total Environment, 712:1-15.
  • Chen B, Chen Z, Lv S, 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol., 102(2):716–723.
  • Deka K, Medhi BK, Kandali GG, Das R, Pathak K, Sarkar L, Nath KD, 2018. Evaluation of physico-chemical properties of rice straw and rice husk-derived biochar. Eco. Env. & Cons., 24(2):768-772.
  • Demirbas A, Arin G, 2002. An overview of biomass pyrolysis. Energy Sources, 24:471-482.
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J, 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol., 114:644–653.
  • Fidel RB, 2015. Biochar properties and ımpact on soil CO2 and N2O emissions. Ph.D. Dissertation, Iowa State University.
  • Hammes K, Smernik RJ, Skjemstad JO, Schmidt MWI, 2008. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Applied Geochemistry, 23:2113–2122.
  • He BJ, Zhang Y, Yin Y, Funk TL, Riskowski GL, 2000. Operating temperature and retention time effects on thermochemical conversion process of swine manure. Trans. ASABE, 43:1821–1825.
  • Heo HS, Park HJ, Yim JH, Sohn JM, Park J, Kim SS, Ryu C, Jeon JK, Park YK, 2010. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour Technol., 101(10):3672–3677.
  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T, 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23):6613-6621.
  • Joseph SD, Downie A, Crosky A, Lehmann J, Munroe P, 2007. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science. Rend. Circ. Mat. Palermo Suppl., 48:101-106.
  • Joseph S, Peacocke C, Lehmann J, Munroe P, 2009. Developing a biochar classification and test methods. In: Biochar for Environmental Management Science and Technology (eds. Lehmann J, Joseph S). London, Earthscan, pp. 107–112.
  • Keiluweit M, Nico PS, Johnson MG, Kleber M, 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol., 44:1247-1253.
  • Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, 2012. Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41:34–43.
  • Krull ES, Baldock JA, Skjemstad JO, Smernik RJ, 2009. Characteristics of biochar: Organo-chemical properties. In: Stability of Biochar in Soil. Biochar for Environmental Management (eds. Lehmann J, Joseph S), Science and Technology, Earthscan, , London, UK, pp.53–66.
  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X, 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41:210–219.
  • Lee JW, Kidder M, Evans BR, Paik S, BuchananIII AC, Garten CT, Brown RC, 2010. Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol., 44:7970–7974.
  • Lehmann J, 2007. Bio-energy in the black. Front. Ecol. Environ., 5:381–387.
  • Lehmann J, Joseph S, 2009. Biochar for environmental management: an introduction. In: Biochar for environmental management: science and technology (eds. Lehannes J, Joseph S). Earthscan, London.
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D, 2011. Biochar effects on soil biota—A review. Soil Biology and Biochemistry, 43:1812–1836.
  • Lehmann J, Joseph S, 2015. Biochar for environmental management: science, transformations. Soil Biol. Biochem., 83:19-28.
  • Li J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Lou T, Mei Z, 2018. Valorizing rice straw and its anaerobically digested residues for biochar to remove Pb (II) from aqueous solution. International Journal of Polymer Science.
  • Li XM, Shen QR, Zhang DQ, Mei XL, Ran W, Xu YC, Yu GH, 2013. Functional groups determine biochar properties (pH and EC) as studied by twodimensional 13C NMR correlation spectroscopy. PLoS One, 8(6) e65949.
  • Liao CP, Wu CZ, Yanyongjie Huang HT, 2004. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenerg., 27:119-130.
  • Liu Z, Niu W, Chu H, Zhou T, Niu Z, 2018. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources, 13(2):3429-3446.
  • Manna S, Singh N, Purakayastha TJ, Berns AE, 2020. Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arabian Journal of Chemistry, 13(1):1247-1258.
  • Mukome FND, Parikh SJ, 2013. UC Davis Biochar Database. University of California Davis, Davis, CA.
  • Mukome FND, Zhang XM, Silva LCR, Six J, Parikh SJ, 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agri. Food Chem., 61:2196–2204.
  • Naeem MA, Khalid M, Aon M, Abbas G, Tahir M, Amjad M, Murtaza B, Yang A, Akhtar SS, 2017. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science, 63(14):2048-2061.
  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schmobert H, 2009. Characterization of designer biochars produced at different temperatures and their effects on a lomay sand. Annals of Environmental Science, 3:195–206.
  • Ozcimen D, Ersoy-Mericboyu A, 2010. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35:1319–1324.
  • Pastorova I, Botto RE, Arisz PW, Boon JJ, 1994. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr Res., 262:27-47.
  • Samantarai S, Achakzai A, 2014. Application of nanotechnology in agriculture and food production: opportunity and challenges. Middle-East J. Sci. Res. 22(4):499–501.
  • San S, 2005. Türkiye’de yetiştirilen çeltik (Oryza sativa L.) çeşitlerinde genetik farklılığın oryzin elektroforegramı yöntemi ile belirlenmesi. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Sashidhar P, Kochar M, Singh B, Gupta M, Cahill D, Adholeya A, Dubey M, 2020. Biochar for delivery of agri-inputs: Current status and future perspectives. Science of the Total Environment, 703: 134892.
  • Soest PJ Van, 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed Sci. Tech., 130:137-171.
  • Sohi SP, Krull E, Lopez-Capel E, Bol R, 2010. Chapter 2-A review of biochar and its use and function in soil. In: Advances in Agronomy (ed. Donald LS), Academic Press, San Diego, CA, pp. 47–82.
  • Spokas KA, 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage., 1:289–303.
  • Sun J, Lian F, Liu Z, Zhu L, Song Z, 2014. Biochars derived from various crop straws: characterization and Cd (II) removal potential. Ecotoxicology and Environmental Safety, 106:226-231.
  • Sürek H, 2002. Çeltik Tarımı. Hasad Yayıncılık, Istanbul.
  • Tan G, Liu Y, Xiao D, 2019. Influence of different pyrolysis methods on the sorption property of rice straw biochar. Separation Science and Technology, 54(17):2773-2782.
  • Tsai WT, Lee MK, Chang YM, 2007. Fast pyrolysis of rice husk: Product yields and composition. Bioresource Technology, 98:22–28.
  • TÜİK, 2019. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001.
  • Uzun BB, Putun AE, Putun E, 2006. Fast pyrolysis of soybean cake: Product yields and compositions. Bioresource Technology, 97:69–576.
  • Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas F, 2010. Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR 24099 EN Office for the Official Publications of the European Communities, Luxembourgp. 149.
  • Wu M, Feng Q, Sun X, Wang H, Gielen G, Wu W, 2015. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports, 5, 10001.
  • Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86:1781-1788.
  • Zhang SY, Hong RY, Cao JP, Takarada T, 2009. Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char. Bioresour. Technol., 100:4278–4283.

Some characterization properties of biochar obtained from rice straw

Year 2020, Volume: 8 Issue: 2, 86 - 97, 30.12.2020
https://doi.org/10.33409/tbbbd.777226

Abstract

The properties of biochar, which are very important in the last decade, are critical in determining usage purpose and estimating potential functions in the soil environment. In this study, some physico-chemical properties of biochar, obtained from slow pyrolysis process at 400 ℃ from rice straw, were investigated by means of advanced analytical techniques. In the study, the properties of biochar material such as yield, volatile matter (VM), mineral ash content (MAC), fixed carbon (FC), elemental composition (C, H, N, S),
spectroscopic properties (FT-IR, 13C NMR, XPS, XRF and XRD), morphological attributes (SEM-EDX), particle size and specific surface area were investigated. According to the results biochar produced from rice straw at 400 °C has large pores and moderate to low specific surface area; is a weakly crystalline, carbon-rich cellulosic amorphous material; contains silvite (KCl) mineral. These properties show that biochar may be suitable for use in carbon stabilization in soils.

Project Number

17L0447008

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99:19–33.
  • Angin D, 2013. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128:593–597.
  • Archontoulis VS, Huber I, Miguez F, Thorburn P, Rogovska N, Laird D, 2016. A model for mechanistic and system assessments of biochar effects on soils andcrops and trade-offs. GCB Bioenergy, 8:1028-1045.
  • ASTM D1762-84, 2007. Standard test method for chemical analysis of wood charcoal. Conshohocken, PA: American Society for Testing and Materials.
  • Bagreev A, Bandosz T, Locke D, 2001. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39:1971-1979.
  • Boyabatli O, Nasiry J, Zhou YH, 2019. Crop planning in sustainable agriculture: dynamic farmland allocation in the presence of crop rotation benefits. Manage. Sci., 65(5):1949–2443.
  • Brassard P, Godbout S, Raghavan V, 2016. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J. Environ. Manag., 181:484–497.
  • Brunauer S, Emmett PH, Teller E, 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60:309–319.
  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS, 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol., 107:419–428.
  • Cao X, Ma L, Liang Y, Gao B, Harris W, 2011. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy manure biochar. Environ Sci. Technol., 45:4884–4889.
  • Cao Y, Tan HM, 2002. Effects of cellulase on the modification of cellulose. Carbohydr Res., 337:1291-1296.
  • Chandra S, Medha I, Bhattacharya J, 2020. Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium in soil for timely and controlled release. Science of the Total Environment, 712:1-15.
  • Chen B, Chen Z, Lv S, 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol., 102(2):716–723.
  • Deka K, Medhi BK, Kandali GG, Das R, Pathak K, Sarkar L, Nath KD, 2018. Evaluation of physico-chemical properties of rice straw and rice husk-derived biochar. Eco. Env. & Cons., 24(2):768-772.
  • Demirbas A, Arin G, 2002. An overview of biomass pyrolysis. Energy Sources, 24:471-482.
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J, 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol., 114:644–653.
  • Fidel RB, 2015. Biochar properties and ımpact on soil CO2 and N2O emissions. Ph.D. Dissertation, Iowa State University.
  • Hammes K, Smernik RJ, Skjemstad JO, Schmidt MWI, 2008. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy. Applied Geochemistry, 23:2113–2122.
  • He BJ, Zhang Y, Yin Y, Funk TL, Riskowski GL, 2000. Operating temperature and retention time effects on thermochemical conversion process of swine manure. Trans. ASABE, 43:1821–1825.
  • Heo HS, Park HJ, Yim JH, Sohn JM, Park J, Kim SS, Ryu C, Jeon JK, Park YK, 2010. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour Technol., 101(10):3672–3677.
  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T, 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23):6613-6621.
  • Joseph SD, Downie A, Crosky A, Lehmann J, Munroe P, 2007. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science. Rend. Circ. Mat. Palermo Suppl., 48:101-106.
  • Joseph S, Peacocke C, Lehmann J, Munroe P, 2009. Developing a biochar classification and test methods. In: Biochar for Environmental Management Science and Technology (eds. Lehmann J, Joseph S). London, Earthscan, pp. 107–112.
  • Keiluweit M, Nico PS, Johnson MG, Kleber M, 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol., 44:1247-1253.
  • Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, 2012. Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41:34–43.
  • Krull ES, Baldock JA, Skjemstad JO, Smernik RJ, 2009. Characteristics of biochar: Organo-chemical properties. In: Stability of Biochar in Soil. Biochar for Environmental Management (eds. Lehmann J, Joseph S), Science and Technology, Earthscan, , London, UK, pp.53–66.
  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X, 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41:210–219.
  • Lee JW, Kidder M, Evans BR, Paik S, BuchananIII AC, Garten CT, Brown RC, 2010. Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol., 44:7970–7974.
  • Lehmann J, 2007. Bio-energy in the black. Front. Ecol. Environ., 5:381–387.
  • Lehmann J, Joseph S, 2009. Biochar for environmental management: an introduction. In: Biochar for environmental management: science and technology (eds. Lehannes J, Joseph S). Earthscan, London.
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D, 2011. Biochar effects on soil biota—A review. Soil Biology and Biochemistry, 43:1812–1836.
  • Lehmann J, Joseph S, 2015. Biochar for environmental management: science, transformations. Soil Biol. Biochem., 83:19-28.
  • Li J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Lou T, Mei Z, 2018. Valorizing rice straw and its anaerobically digested residues for biochar to remove Pb (II) from aqueous solution. International Journal of Polymer Science.
  • Li XM, Shen QR, Zhang DQ, Mei XL, Ran W, Xu YC, Yu GH, 2013. Functional groups determine biochar properties (pH and EC) as studied by twodimensional 13C NMR correlation spectroscopy. PLoS One, 8(6) e65949.
  • Liao CP, Wu CZ, Yanyongjie Huang HT, 2004. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenerg., 27:119-130.
  • Liu Z, Niu W, Chu H, Zhou T, Niu Z, 2018. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources, 13(2):3429-3446.
  • Manna S, Singh N, Purakayastha TJ, Berns AE, 2020. Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arabian Journal of Chemistry, 13(1):1247-1258.
  • Mukome FND, Parikh SJ, 2013. UC Davis Biochar Database. University of California Davis, Davis, CA.
  • Mukome FND, Zhang XM, Silva LCR, Six J, Parikh SJ, 2013. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agri. Food Chem., 61:2196–2204.
  • Naeem MA, Khalid M, Aon M, Abbas G, Tahir M, Amjad M, Murtaza B, Yang A, Akhtar SS, 2017. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science, 63(14):2048-2061.
  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schmobert H, 2009. Characterization of designer biochars produced at different temperatures and their effects on a lomay sand. Annals of Environmental Science, 3:195–206.
  • Ozcimen D, Ersoy-Mericboyu A, 2010. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35:1319–1324.
  • Pastorova I, Botto RE, Arisz PW, Boon JJ, 1994. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr Res., 262:27-47.
  • Samantarai S, Achakzai A, 2014. Application of nanotechnology in agriculture and food production: opportunity and challenges. Middle-East J. Sci. Res. 22(4):499–501.
  • San S, 2005. Türkiye’de yetiştirilen çeltik (Oryza sativa L.) çeşitlerinde genetik farklılığın oryzin elektroforegramı yöntemi ile belirlenmesi. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Sashidhar P, Kochar M, Singh B, Gupta M, Cahill D, Adholeya A, Dubey M, 2020. Biochar for delivery of agri-inputs: Current status and future perspectives. Science of the Total Environment, 703: 134892.
  • Soest PJ Van, 2006. Rice straw, the role of silica and treatments to improve quality. Animal Feed Sci. Tech., 130:137-171.
  • Sohi SP, Krull E, Lopez-Capel E, Bol R, 2010. Chapter 2-A review of biochar and its use and function in soil. In: Advances in Agronomy (ed. Donald LS), Academic Press, San Diego, CA, pp. 47–82.
  • Spokas KA, 2010. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage., 1:289–303.
  • Sun J, Lian F, Liu Z, Zhu L, Song Z, 2014. Biochars derived from various crop straws: characterization and Cd (II) removal potential. Ecotoxicology and Environmental Safety, 106:226-231.
  • Sürek H, 2002. Çeltik Tarımı. Hasad Yayıncılık, Istanbul.
  • Tan G, Liu Y, Xiao D, 2019. Influence of different pyrolysis methods on the sorption property of rice straw biochar. Separation Science and Technology, 54(17):2773-2782.
  • Tsai WT, Lee MK, Chang YM, 2007. Fast pyrolysis of rice husk: Product yields and composition. Bioresource Technology, 98:22–28.
  • TÜİK, 2019. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001.
  • Uzun BB, Putun AE, Putun E, 2006. Fast pyrolysis of soybean cake: Product yields and compositions. Bioresource Technology, 97:69–576.
  • Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas F, 2010. Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR 24099 EN Office for the Official Publications of the European Communities, Luxembourgp. 149.
  • Wu M, Feng Q, Sun X, Wang H, Gielen G, Wu W, 2015. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Scientific Reports, 5, 10001.
  • Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86:1781-1788.
  • Zhang SY, Hong RY, Cao JP, Takarada T, 2009. Influence of manure types and pyrolysis conditions on the oxidation behavior of manure char. Bioresour. Technol., 100:4278–4283.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Muhittin Onur Akça

Sadık Usta

Veli Uygur 0000-0003-3971-7714

Sonay Sözüdoğru Ok

Project Number 17L0447008
Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Akça, M. O., Usta, S., Uygur, V., Sözüdoğru Ok, S. (2020). Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri. Toprak Bilimi Ve Bitki Besleme Dergisi, 8(2), 86-97. https://doi.org/10.33409/tbbbd.777226
AMA Akça MO, Usta S, Uygur V, Sözüdoğru Ok S. Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri. tbbbd. December 2020;8(2):86-97. doi:10.33409/tbbbd.777226
Chicago Akça, Muhittin Onur, Sadık Usta, Veli Uygur, and Sonay Sözüdoğru Ok. “Çeltik sapından Elde Edilen biyokömürün Bazı Karakterizasyon özellikleri”. Toprak Bilimi Ve Bitki Besleme Dergisi 8, no. 2 (December 2020): 86-97. https://doi.org/10.33409/tbbbd.777226.
EndNote Akça MO, Usta S, Uygur V, Sözüdoğru Ok S (December 1, 2020) Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri. Toprak Bilimi ve Bitki Besleme Dergisi 8 2 86–97.
IEEE M. O. Akça, S. Usta, V. Uygur, and S. Sözüdoğru Ok, “Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri”, tbbbd, vol. 8, no. 2, pp. 86–97, 2020, doi: 10.33409/tbbbd.777226.
ISNAD Akça, Muhittin Onur et al. “Çeltik sapından Elde Edilen biyokömürün Bazı Karakterizasyon özellikleri”. Toprak Bilimi ve Bitki Besleme Dergisi 8/2 (December 2020), 86-97. https://doi.org/10.33409/tbbbd.777226.
JAMA Akça MO, Usta S, Uygur V, Sözüdoğru Ok S. Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri. tbbbd. 2020;8:86–97.
MLA Akça, Muhittin Onur et al. “Çeltik sapından Elde Edilen biyokömürün Bazı Karakterizasyon özellikleri”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 8, no. 2, 2020, pp. 86-97, doi:10.33409/tbbbd.777226.
Vancouver Akça MO, Usta S, Uygur V, Sözüdoğru Ok S. Çeltik sapından elde edilen biyokömürün bazı karakterizasyon özellikleri. tbbbd. 2020;8(2):86-97.