Research Article
BibTex RIS Cite

Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu

Year 2023, Volume: 11 Issue: 2, 111 - 121, 21.12.2023
https://doi.org/10.33409/tbbbd.1383845

Abstract

Biyoçar kavramı, modern anlamda sürdürülebilir atık kullanımı ve toprak kaynakları yönetimine katkı sağlamak amacıyla geliştirilmiştir. Biyoçarın kalitesi elde edildiği hammaddenin özellikleri ve bileşimi tarafından belirlenir. Bu çalışmanın amacı çay atığı, buğday samanı, fındık zurufu ve çeltik kavuzu atıklarından biyoçar üretmek ve üretilen biyoçarların özelliklerini belirlemektir. Organik atıkların 450°C'de 2 saat süreyle pirolizi sonucunda biyoçarlar elde edilmiştir. Biyoçarlara ait verim, pH, elektriksel iletkenlik, katyon değişim kapasitesi, değişebilir katyonlar (kalsiyum, magnezyum, potasyum ve sodyum), azot, fosfor, kül içeriği, toplam karbon, C:N oranı, alkalinite, su tutma kapasitesi ve mikro element (demir, bakır, manganez ve çinko) içerikleri belirlenmiştir. Biyoçar türleri arasındaki önemli karakteristik farklılıkların elde edildikleri hammadde türlerinin bir fonksiyonu olduğu sonucuna varılmıştır. Fındık zurufu (FZB) biyoçarının besin tutma kapasitesi ve alkalinitesinin diğerlerine oranla daha yüksek olduğu belirlenmiştir. Buğday samanı biyoçarının (BSB) en yüksek su tutma kapasitesine, çay atığı (ÇAB) biyoçarının en düşük C:N oranına, çeltik kavuzu (ÇKB) biyoçarının ise en yüksek kül içeriğine sahip olduğu bulunmuştur. Elde edilen tüm biyoçar çeşitlerinin, bitki besin kaynağı olmalarının yanı sıra toprak kalitesini iyileştirici düzenleyiciler olarak kullanılma potansiyellerine sahip oldukları belirlenmiştir.

Supporting Institution

Ondokuz Mayıs Üniversitesi

Thanks

Bu çalışma PYO.ZRT.1904.23.015 nolu projeden üretilmiş olup, desteklerinden dolayı Ondokuz Mayıs Üniversitesi BAPKOB’ne teşekkür ederiz.

References

  • Agegnehu G, Bass A M, Nelson PN, Bird MI. 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054
  • Agegnehu G, Srivastava AK, Bird MI. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. In Applied Soil Ecology (Vol. 119, pp. 156–170). Elsevier B.V. https://doi.org/10.1016/j.apsoil.2017.06.008
  • Alavijeh KM, Yaghmaei S. 2016. Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Management, 52, 375–394. https://doi.org/10.1016/j.wasman.2016.03.025
  • Alburquerque JA, Salazar P, Barrón V, Torrent J, Del Campillo MDC, Gallardo A, Villar R. 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33(3), 475–484. https://doi.org/10.1007/s13593-012-0128-3
  • Ali L, Palamanit A, Techato K, Ullah A, Chowdhury MS, Phoungthong K. 2022. Characteristics of Biochars Derived from the Pyrolysis and Co-Pyrolysis of Rubberwood Sawdust and Sewage Sludge for Further Applications. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14073829
  • Berek AK, Hue NV. 2016. Characterization of biochars and their use as an amendment to acid soils. Soil Science, 181(9–10), 412–426.
  • Bikbulatova S, Tahmasebi A, Zhang Z, Rish SK, Yu J. 2018. Understanding water retention behavior and mechanism in bio-char. Fuel Processing Technology, 169.
  • Bonanomi G, Ippolito F, Cesarano G, Nanni B, Lombardi N, Rita A, Saracino A, Scala F. 2017. Biochar as plant growth promoter: Better off alone or mixed with organic amendments? Frontiers in Plant Science, 8.
  • Candemir F, Gülser C. 2007. Changes in some chemical and physical properties of a sandy clay loam soil during the decomposition of hazelnut husk. Asian J. Chem., 19 (3):2452-2460.
  • Candemir F, Gülser C. 2011. Effects of different agricultural wastes on some soil quality indexes at clay and loamy sand fields. Comm. Soil Sci. Plant Analy. 42 (1):13-28.
  • Cheng J, Hu SC, Sun GT, Geng ZC, Zhu MQ. 2021. The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops and Products, 170.
  • Choudhary TK, Khan KS, Hussain Q, Ahmad M, Ashfaq M. 2019. Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes. Arabian Journal of Geosciences, 12(20).
  • Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS. 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331–339.
  • Cornelissen G, Jubaedah Nurida NL, Hale SE, Martinsen V, Silvani L, Mulder J. (2018). Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of the Total Environment, 634, 561–568.
  • De Corato U. 2020. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. In Science of the Total Environment (Vol. 738). Elsevier B.V.
  • Demir Z, Gülser C. 2015. Effects of rice husk compost application on soil quality parameters in greenhouse conditions. Eurasian Journal of Soil Science, 4(3):185-190.
  • Demir Z, Gülser C. 2008. Changes in OC, NO3-N, EC values and soil respiration along a soil depth due to surface application of organic wastes. Asian J. Chem., 20(3):2011-2021.
  • Demir Z, Gülser C. 2021. Effects of Rice Husk Compost on Some Soil Properties, Water Use Efficiency and Tomato (Solanum lycopersicum L.) Yield under Greenhouse and Field Conditions. Communications in Soil Science and Plant Analysis, pp.1-18.
  • Demirkaya S, Gülser C. 2023. Asitleştirilmiş biyoçar uygulamalarının kaba bünyeli bir toprakta DTPA ile ekstrakte edilebilir mikro element içeriğine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 11(1), pp.47-53.
  • Domingues RR, Trugilho PF, Silva CA, De Melo ICNA, Melo LCA, Magriotis ZM, Sánchez-Monedero MA. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 12(5).
  • Enders A, Lehmann J. 2017. Proximate analyses for characterising biochars. In Biochar : a guide to analytical methods (pp. 9–27).
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653.
  • Frank K, Beegle D, Denning J. 1998. Recommended Chemical Soil Test Procedures for the North Central Region.
  • Glab T, Palmowska J, Zaleski T, Gondek K, 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, pp.11-20.
  • Glazunova DM, Kuryntseva PA, Selivanovskaya SY, Galitskaya PY. 2018. Assessing the Potential of Using Biochar as a Soil Conditioner. IOP Conference Series: Earth and Environmental Science, 107(1).
  • Graber ER, Singh B, Hanley K, Lehmann J. 2017. Determination of cation exchange capacity in biochar. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar; A Guide To Analytical Methods. CRC PRESS.
  • Gülser C, Kızılkaya R, Aşkın T, Ekberli İ. 2015. Changes in Soil Quality by Compost and Hazelnut Husk Applications in a Hazelnut Orchard. Compost Science and Utilization, 23:3, 135-141.
  • Gülser C. 2006. Effect of forage cropping treatments on soil structure and relationships with fractal dimensions. Geoderma, 131(1-2), pp.33-44.
  • Gülser C, Ekberli İ, Gülser F. 2021. Effects of deforestation on soil properties and organic carbon stock of a hillslope position land in Black Sea Region of Turkey. Eurasian Journal of Soil Science, 10 (4) , 278-284.
  • Gülser C. 2021. Soil Structure and Moisture Constants Changed by Tobacco Waste Application in a Clay Textured Field. Toprak Su Dergisi, 10(2), pp.88-93.
  • Gülser C., 2022. Effects of agrıcultural wastes on some physıcal propertıes of clay loam soıl. Agricultural Sciences/Agrarni Nauki, 14(33).
  • Gülser C, Candemir F. 2012. Changes in Penetration Resistance of a Clay Field with Organic Waste Applications. Eurasian Journal of Soil Science, 1(1):16-21.
  • Gülser C, Demir Z, İç S. 2010. Changes in some soil properties at different incubation periods after tobacco waste application. Journal of Environmental Biology, 31:671-674.
  • Günal H, Bayram Ö, Günal E, Erdem H. 2019. Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. Eurasian Journal of Soil Science, 8(4), 329–339. https://doi.org/10.18393/ejss.599760
  • Hidayat Rahmat A, Nissa RC, Sukamto Nuraini L, Nurtanto M, Ramadhani WS. 2023. Analysis of rice husk biochar characteristics under different pyrolysis temperature. IOP Conference Series: Earth and Environmental Science, 1201(1).
  • Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, Kirkham MB, Chowdhury S, Bolan N. 2020. Biochar and its importance on nutrient dynamics in soil and plant. In Biochar (Vol. 2, Issue 4, pp. 379–420). Springer Science and Business Media B.V.
  • Ippolito JA, Cui L, Kammann C, Wrage-Mönnig, N, Estavillo JM, Fuertes-Mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, Borchard N. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. In Biochar (Vol. 2, Issue 4, pp. 421–438). Springer Science and Business Media B.V.
  • IBI. 2015. State of the Biochar Industry 2014 A Survey of Commercial Activity in the Biochar Sector A report by the International Biochar Initiative (IBI) Copyright and Disclaimer.
  • İç S, Gülser C. 2008. Tütün Atığının Farklı Bünyeli Toprakların Bazı Kimyasal ve Fiziksel Özelliklerine Etkisi. OMÜ Ziraat Fak. Dergisi, 23(2), 104-109.
  • Jahan S, Iqbal S, Rasul F, Jabeen K. 2019. Structural characterization of soil biochar amendments and their comparative performance under moisture deficit regimes. Arabian Journal of Geosciences, 12(6).
  • Jiang S, Nguyen TAH, Rudolph V, Yang H, Zhang D, Ok YS, Huang L. 2017. Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39(2), 403–415.
  • Jin Z, Chen C, Chen X, Hopkins I, Zhang X, Han Z, Jiang F, Billy G. 2019. The crucial factors of soil fertility and rapeseed yield - A five year field trial with biochar addition in upland red soil, China. Science of the Total Environment, 649, 1467–1480.
  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621.
  • Lataf A, Jozefczak M, Vandecasteele B, Viaene J, Schreurs S, Carleer R, Yperman J, Marchal W, Cuypers A, Vandamme D. 2022. The effect of pyrolysis temperature and feedstock on biochar agronomic properties. Journal of Analytical and Applied Pyrolysis, 168.
  • Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DCW, Ok YS, Kwon EE. 2017. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 185, 214–222.
  • Lehman J, Joseph S. 2009. Biochar for Environmental Management: An Introduction. In J. Lehman & S. Joseph (Eds.), Biochar for Environmental Management (Vol. 1). Earthscan .
  • Lehmann J. 2007. Biochar bio-energy. Front Ecol Environ, 5(7), 381–387.
  • Liang J, Li Y, Si B, Wang Y, Chen X, Wang X, Chen H, Wang H, Zhang F, Bai Y, Biswas A. 2021. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Science of the Total Environment, 771.
  • Maharlouei ZD, Fekri M, Saljooqi A, Mahmoodabadi M, Hejazi M. 2021. Effect of modified biochar on the availability of some heavy metals speciation and investigation of contaminated calcareous soil. Environmental Earth Sciences, 80(3).
  • Manolikaki II, Mangolis A, Diamadopoulos E. 2016. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Journal of Environmental Management, 181, 536–543.
  • Munera-Echeverri, JL, Martinsen V, Strand LT, Zivanovic V, Cornelissen G, Mulder J. 2018. Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment, 642.
  • Negiş H, Gümüş İ, Şeker C. 2019. The properties of biochars derived from different plant residue and different pyrolysis temperatures. Akademik Ziraat Dergisi.
  • Nguyen BT, Trinh NN, Le CMT, Nguyen TT, Tran T, Van Thai BV, Le T Van. 2018. The interactive effects of biochar and cow manure on rice growth and selected properties of salt-affected soil. Archives of Agronomy and Soil Science, 64(12), 1744–1758.
  • Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35–44.
  • Peiris C, Nayanathara O, Navarathna CM, Jayawardhana Y, Nawalage S, Burk G, Karunanayake AG, Madduri SB, Vithanage M, Kaumal MN, Mlsna TE, Hassan EB, Abeysundara S, Ferez F, Gunatilake SR. 2019. The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: A comparative study. RSC Advances, 9(31), 17612–17622.
  • Peksen A, Yakupoglu G, Yakupoglu T, Gülser C, Öztürk E, Özdemir N. 2011. Changes in chemical compositions of substrates before and after Ganoderma lucidum cultivation. World J Microbiol Biotechnol 27, 637–642.
  • Phillips CL, Meyer KM, Garcia-Jaramillo M, Weidman CS, Stewart CE, Wanzek T, Grusak MA, Watts DW, Novak J, Trippe KM. 2022. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar, 4(1).
  • Reza MS, Afroze S, Bakar MSA, Saidur R, Aslfattahi N, Taweekun J, Azad AK. 2020. Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature. Biochar, 2(2), 239–251.
  • Roshan A, Ghosh D, Maiti SK. 2023. How temperature affects biochar properties for application in coal mine spoils? A meta-analysis. In Carbon Research (Vol. 2, Issue 1). Springer.
  • Safaei Khorram M, Zhang G, Fatemi A, Kiefer R, Mahmood A, Jafarnia S, Zakaria MP, Li G. 2020. Effect of walnut shell biochars on soil quality, crop yields, and weed dynamics in a 4-year field experiment. Environmental Science and Pollution Research, 27(15), 18510–18520.
  • Saffari N, Hajabbasi MA, Shirani H, Mosaddeghi MR, Owens G. 2021. Influence of corn residue biochar on water retention and penetration resistance in a calcareous sandy loam soil. Geoderma, 383.
  • Singh Karam D, Nagabovanalli P, Sundara Rajoo K, Fauziah Ishak C, Abdu A, Rosli Z, Melissa Muharam F, Zulperi D. 2022. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. In Journal of the Saudi Society of Agricultural Sciences (Vol. 21, Issue 3, pp. 149–159). King Saud University.
  • Singh B, Camps-Arbestain M, Lehmann J, CSIRO (Australia). 2017a. Biochar : a guide to analytical methods. CRC PRESSŞ Taylor & Francis group.
  • Singh B, Dolk MM, Shen Q, Camps-Arbestain M. 2017b. Biochar pH, electrical conductivity and liming potential (B. Singh, M. Camps-Arbestain, & J. Lehmann, Eds.; pp. 23–38). CRC PRESS.
  • Somparn W, Panyoyai N, Khamdaeng T, Tippayawong N, Tantikul S, Wongsiriamnuay T. 2020. Effect of process conditions on properties of biochar from agricultural residues. IOP Conference Series: Earth and Environmental Science, 463(1).
  • Sun F, Lu S. 2014. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26–33.
  • Tanure MMC, da Costa LM, Huiz HA, Fernandes RBA, Cecon PR, Junior JDP, da Luz JMR. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil and Tillage Research, 192, pp.164-173.
  • Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In Reviews in Environmental Science and Biotechnology (Vol. 19, Issue 1, pp. 191–215). Springer.
  • USDA-NRCS. 2017. National Soil Survey Handbook. https://www.nrcs.usda.gov/resources/guides-and-instructions/national-soil-survey-handbook
  • Venkatesh G, Gopinath KA, Reddy KS, Reddy BS, Prabhakar M, Srinivasarao C, Kumari VV, Singh VK. 2022. Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use. Sustainability (Switzerland), 14(4).
  • Wang N, Li JY, Xu RK. 2009. Use of agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use and Management, 25(2), 128–132.
  • Whitney DA. 1998. Recommended Chemical Soil Test Procedures for the North Central Region. https://p2infohouse.org/ref/17/16690.pdf#page=33
  • Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S. 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197.
  • Xiao L, Yuan G, Feng L, Bi D, Wei J. 2020. Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agriculture, Ecosystems and Environment, 303.
  • Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. In Biotechnology Reports (Vol. 28).
  • Yuan JH, Xu RK. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115.
  • Yuan JH, Xu RK, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497.
  • Zhang G, Guo X, Zhu Y, Han Z, He Q, Zhang F. 2017. Effect of biochar on the presence of nutrients and ryegrass growth in the soil from an abandoned indigenous coking site: The potential role of biochar in the revegetation of contaminated site. Science of the Total Environment, 601–602, 469–477.
  • Zhang H, Chen C, Gray EM, Boyd SE. 2017. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105.
  • Zhang J, You C. 2013. Water holding capacity and absorption properties of wood chars. Energy and Fuels, 27(5).
  • Zhang Y, Idowu OJ, Brewer CE. 2016. Using agricultural residue biochar to improve soil quality of desert soils. Agriculture (Switzerland), 6(1).
  • Zhao L, Cao X, Mašek O, Zimmerman A. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9.

Characterization of biochars derived from slow pyrolysis of agricultural originated wastes

Year 2023, Volume: 11 Issue: 2, 111 - 121, 21.12.2023
https://doi.org/10.33409/tbbbd.1383845

Abstract

The concept of biochar was developed to contribute to modern sustainable waste utilization and soil resources management. The quality of the biochar is determined by the properties and composition of the raw feedstock material. The aim of this study is to produce biochar from tea waste, wheat straw, hazelnut husk and paddy husk and to determine the properties of the produced biochars. Biochars were obtained as a result of pyrolysis of organic wastes at 450°C for 2 hours. For each biochar, yield, pH, electrical conductivity, cation exchange capacity, exchangeable cations (calcium, magnesium, potassium and sodium), nitrogen, phosphorus, ash content, total carbon, C:N ratio, alkalinity, water holding capacity and microelement (iron, copper, manganese and zinc) contents were determined. Results revealed that, considerable variation of characteristics among type of biochars is a function of feedstock types. It was determined that the nutrient retention capacity and alkalinity of hazelnut husk biochar are higher than the others. Wheat straw biochar had the highest water retention capacity, tea waste biochar had the lowest C:N ratio, while rice husk biochar had the highest ash content. It has been concluded that all biochar types have the potential to be used as plant nutrient sources as well as conditioners to improve soil quality.

References

  • Agegnehu G, Bass A M, Nelson PN, Bird MI. 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054
  • Agegnehu G, Srivastava AK, Bird MI. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. In Applied Soil Ecology (Vol. 119, pp. 156–170). Elsevier B.V. https://doi.org/10.1016/j.apsoil.2017.06.008
  • Alavijeh KM, Yaghmaei S. 2016. Biochemical production of bioenergy from agricultural crops and residue in Iran. Waste Management, 52, 375–394. https://doi.org/10.1016/j.wasman.2016.03.025
  • Alburquerque JA, Salazar P, Barrón V, Torrent J, Del Campillo MDC, Gallardo A, Villar R. 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33(3), 475–484. https://doi.org/10.1007/s13593-012-0128-3
  • Ali L, Palamanit A, Techato K, Ullah A, Chowdhury MS, Phoungthong K. 2022. Characteristics of Biochars Derived from the Pyrolysis and Co-Pyrolysis of Rubberwood Sawdust and Sewage Sludge for Further Applications. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14073829
  • Berek AK, Hue NV. 2016. Characterization of biochars and their use as an amendment to acid soils. Soil Science, 181(9–10), 412–426.
  • Bikbulatova S, Tahmasebi A, Zhang Z, Rish SK, Yu J. 2018. Understanding water retention behavior and mechanism in bio-char. Fuel Processing Technology, 169.
  • Bonanomi G, Ippolito F, Cesarano G, Nanni B, Lombardi N, Rita A, Saracino A, Scala F. 2017. Biochar as plant growth promoter: Better off alone or mixed with organic amendments? Frontiers in Plant Science, 8.
  • Candemir F, Gülser C. 2007. Changes in some chemical and physical properties of a sandy clay loam soil during the decomposition of hazelnut husk. Asian J. Chem., 19 (3):2452-2460.
  • Candemir F, Gülser C. 2011. Effects of different agricultural wastes on some soil quality indexes at clay and loamy sand fields. Comm. Soil Sci. Plant Analy. 42 (1):13-28.
  • Cheng J, Hu SC, Sun GT, Geng ZC, Zhu MQ. 2021. The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops and Products, 170.
  • Choudhary TK, Khan KS, Hussain Q, Ahmad M, Ashfaq M. 2019. Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes. Arabian Journal of Geosciences, 12(20).
  • Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS. 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331–339.
  • Cornelissen G, Jubaedah Nurida NL, Hale SE, Martinsen V, Silvani L, Mulder J. (2018). Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of the Total Environment, 634, 561–568.
  • De Corato U. 2020. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. In Science of the Total Environment (Vol. 738). Elsevier B.V.
  • Demir Z, Gülser C. 2015. Effects of rice husk compost application on soil quality parameters in greenhouse conditions. Eurasian Journal of Soil Science, 4(3):185-190.
  • Demir Z, Gülser C. 2008. Changes in OC, NO3-N, EC values and soil respiration along a soil depth due to surface application of organic wastes. Asian J. Chem., 20(3):2011-2021.
  • Demir Z, Gülser C. 2021. Effects of Rice Husk Compost on Some Soil Properties, Water Use Efficiency and Tomato (Solanum lycopersicum L.) Yield under Greenhouse and Field Conditions. Communications in Soil Science and Plant Analysis, pp.1-18.
  • Demirkaya S, Gülser C. 2023. Asitleştirilmiş biyoçar uygulamalarının kaba bünyeli bir toprakta DTPA ile ekstrakte edilebilir mikro element içeriğine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 11(1), pp.47-53.
  • Domingues RR, Trugilho PF, Silva CA, De Melo ICNA, Melo LCA, Magriotis ZM, Sánchez-Monedero MA. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 12(5).
  • Enders A, Lehmann J. 2017. Proximate analyses for characterising biochars. In Biochar : a guide to analytical methods (pp. 9–27).
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653.
  • Frank K, Beegle D, Denning J. 1998. Recommended Chemical Soil Test Procedures for the North Central Region.
  • Glab T, Palmowska J, Zaleski T, Gondek K, 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, pp.11-20.
  • Glazunova DM, Kuryntseva PA, Selivanovskaya SY, Galitskaya PY. 2018. Assessing the Potential of Using Biochar as a Soil Conditioner. IOP Conference Series: Earth and Environmental Science, 107(1).
  • Graber ER, Singh B, Hanley K, Lehmann J. 2017. Determination of cation exchange capacity in biochar. In B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar; A Guide To Analytical Methods. CRC PRESS.
  • Gülser C, Kızılkaya R, Aşkın T, Ekberli İ. 2015. Changes in Soil Quality by Compost and Hazelnut Husk Applications in a Hazelnut Orchard. Compost Science and Utilization, 23:3, 135-141.
  • Gülser C. 2006. Effect of forage cropping treatments on soil structure and relationships with fractal dimensions. Geoderma, 131(1-2), pp.33-44.
  • Gülser C, Ekberli İ, Gülser F. 2021. Effects of deforestation on soil properties and organic carbon stock of a hillslope position land in Black Sea Region of Turkey. Eurasian Journal of Soil Science, 10 (4) , 278-284.
  • Gülser C. 2021. Soil Structure and Moisture Constants Changed by Tobacco Waste Application in a Clay Textured Field. Toprak Su Dergisi, 10(2), pp.88-93.
  • Gülser C., 2022. Effects of agrıcultural wastes on some physıcal propertıes of clay loam soıl. Agricultural Sciences/Agrarni Nauki, 14(33).
  • Gülser C, Candemir F. 2012. Changes in Penetration Resistance of a Clay Field with Organic Waste Applications. Eurasian Journal of Soil Science, 1(1):16-21.
  • Gülser C, Demir Z, İç S. 2010. Changes in some soil properties at different incubation periods after tobacco waste application. Journal of Environmental Biology, 31:671-674.
  • Günal H, Bayram Ö, Günal E, Erdem H. 2019. Characterization of soil amendment potential of 18 different biochar types produced by slow pyrolysis. Eurasian Journal of Soil Science, 8(4), 329–339. https://doi.org/10.18393/ejss.599760
  • Hidayat Rahmat A, Nissa RC, Sukamto Nuraini L, Nurtanto M, Ramadhani WS. 2023. Analysis of rice husk biochar characteristics under different pyrolysis temperature. IOP Conference Series: Earth and Environmental Science, 1201(1).
  • Hossain MZ, Bahar MM, Sarkar B, Donne SW, Ok YS, Palansooriya KN, Kirkham MB, Chowdhury S, Bolan N. 2020. Biochar and its importance on nutrient dynamics in soil and plant. In Biochar (Vol. 2, Issue 4, pp. 379–420). Springer Science and Business Media B.V.
  • Ippolito JA, Cui L, Kammann C, Wrage-Mönnig, N, Estavillo JM, Fuertes-Mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, Borchard N. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. In Biochar (Vol. 2, Issue 4, pp. 421–438). Springer Science and Business Media B.V.
  • IBI. 2015. State of the Biochar Industry 2014 A Survey of Commercial Activity in the Biochar Sector A report by the International Biochar Initiative (IBI) Copyright and Disclaimer.
  • İç S, Gülser C. 2008. Tütün Atığının Farklı Bünyeli Toprakların Bazı Kimyasal ve Fiziksel Özelliklerine Etkisi. OMÜ Ziraat Fak. Dergisi, 23(2), 104-109.
  • Jahan S, Iqbal S, Rasul F, Jabeen K. 2019. Structural characterization of soil biochar amendments and their comparative performance under moisture deficit regimes. Arabian Journal of Geosciences, 12(6).
  • Jiang S, Nguyen TAH, Rudolph V, Yang H, Zhang D, Ok YS, Huang L. 2017. Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39(2), 403–415.
  • Jin Z, Chen C, Chen X, Hopkins I, Zhang X, Han Z, Jiang F, Billy G. 2019. The crucial factors of soil fertility and rapeseed yield - A five year field trial with biochar addition in upland red soil, China. Science of the Total Environment, 649, 1467–1480.
  • Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621.
  • Lataf A, Jozefczak M, Vandecasteele B, Viaene J, Schreurs S, Carleer R, Yperman J, Marchal W, Cuypers A, Vandamme D. 2022. The effect of pyrolysis temperature and feedstock on biochar agronomic properties. Journal of Analytical and Applied Pyrolysis, 168.
  • Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DCW, Ok YS, Kwon EE. 2017. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 185, 214–222.
  • Lehman J, Joseph S. 2009. Biochar for Environmental Management: An Introduction. In J. Lehman & S. Joseph (Eds.), Biochar for Environmental Management (Vol. 1). Earthscan .
  • Lehmann J. 2007. Biochar bio-energy. Front Ecol Environ, 5(7), 381–387.
  • Liang J, Li Y, Si B, Wang Y, Chen X, Wang X, Chen H, Wang H, Zhang F, Bai Y, Biswas A. 2021. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Science of the Total Environment, 771.
  • Maharlouei ZD, Fekri M, Saljooqi A, Mahmoodabadi M, Hejazi M. 2021. Effect of modified biochar on the availability of some heavy metals speciation and investigation of contaminated calcareous soil. Environmental Earth Sciences, 80(3).
  • Manolikaki II, Mangolis A, Diamadopoulos E. 2016. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Journal of Environmental Management, 181, 536–543.
  • Munera-Echeverri, JL, Martinsen V, Strand LT, Zivanovic V, Cornelissen G, Mulder J. 2018. Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment, 642.
  • Negiş H, Gümüş İ, Şeker C. 2019. The properties of biochars derived from different plant residue and different pyrolysis temperatures. Akademik Ziraat Dergisi.
  • Nguyen BT, Trinh NN, Le CMT, Nguyen TT, Tran T, Van Thai BV, Le T Van. 2018. The interactive effects of biochar and cow manure on rice growth and selected properties of salt-affected soil. Archives of Agronomy and Soil Science, 64(12), 1744–1758.
  • Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35–44.
  • Peiris C, Nayanathara O, Navarathna CM, Jayawardhana Y, Nawalage S, Burk G, Karunanayake AG, Madduri SB, Vithanage M, Kaumal MN, Mlsna TE, Hassan EB, Abeysundara S, Ferez F, Gunatilake SR. 2019. The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: A comparative study. RSC Advances, 9(31), 17612–17622.
  • Peksen A, Yakupoglu G, Yakupoglu T, Gülser C, Öztürk E, Özdemir N. 2011. Changes in chemical compositions of substrates before and after Ganoderma lucidum cultivation. World J Microbiol Biotechnol 27, 637–642.
  • Phillips CL, Meyer KM, Garcia-Jaramillo M, Weidman CS, Stewart CE, Wanzek T, Grusak MA, Watts DW, Novak J, Trippe KM. 2022. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar, 4(1).
  • Reza MS, Afroze S, Bakar MSA, Saidur R, Aslfattahi N, Taweekun J, Azad AK. 2020. Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature. Biochar, 2(2), 239–251.
  • Roshan A, Ghosh D, Maiti SK. 2023. How temperature affects biochar properties for application in coal mine spoils? A meta-analysis. In Carbon Research (Vol. 2, Issue 1). Springer.
  • Safaei Khorram M, Zhang G, Fatemi A, Kiefer R, Mahmood A, Jafarnia S, Zakaria MP, Li G. 2020. Effect of walnut shell biochars on soil quality, crop yields, and weed dynamics in a 4-year field experiment. Environmental Science and Pollution Research, 27(15), 18510–18520.
  • Saffari N, Hajabbasi MA, Shirani H, Mosaddeghi MR, Owens G. 2021. Influence of corn residue biochar on water retention and penetration resistance in a calcareous sandy loam soil. Geoderma, 383.
  • Singh Karam D, Nagabovanalli P, Sundara Rajoo K, Fauziah Ishak C, Abdu A, Rosli Z, Melissa Muharam F, Zulperi D. 2022. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. In Journal of the Saudi Society of Agricultural Sciences (Vol. 21, Issue 3, pp. 149–159). King Saud University.
  • Singh B, Camps-Arbestain M, Lehmann J, CSIRO (Australia). 2017a. Biochar : a guide to analytical methods. CRC PRESSŞ Taylor & Francis group.
  • Singh B, Dolk MM, Shen Q, Camps-Arbestain M. 2017b. Biochar pH, electrical conductivity and liming potential (B. Singh, M. Camps-Arbestain, & J. Lehmann, Eds.; pp. 23–38). CRC PRESS.
  • Somparn W, Panyoyai N, Khamdaeng T, Tippayawong N, Tantikul S, Wongsiriamnuay T. 2020. Effect of process conditions on properties of biochar from agricultural residues. IOP Conference Series: Earth and Environmental Science, 463(1).
  • Sun F, Lu S. 2014. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26–33.
  • Tanure MMC, da Costa LM, Huiz HA, Fernandes RBA, Cecon PR, Junior JDP, da Luz JMR. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil and Tillage Research, 192, pp.164-173.
  • Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In Reviews in Environmental Science and Biotechnology (Vol. 19, Issue 1, pp. 191–215). Springer.
  • USDA-NRCS. 2017. National Soil Survey Handbook. https://www.nrcs.usda.gov/resources/guides-and-instructions/national-soil-survey-handbook
  • Venkatesh G, Gopinath KA, Reddy KS, Reddy BS, Prabhakar M, Srinivasarao C, Kumari VV, Singh VK. 2022. Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use. Sustainability (Switzerland), 14(4).
  • Wang N, Li JY, Xu RK. 2009. Use of agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use and Management, 25(2), 128–132.
  • Whitney DA. 1998. Recommended Chemical Soil Test Procedures for the North Central Region. https://p2infohouse.org/ref/17/16690.pdf#page=33
  • Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S. 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197.
  • Xiao L, Yuan G, Feng L, Bi D, Wei J. 2020. Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agriculture, Ecosystems and Environment, 303.
  • Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. In Biotechnology Reports (Vol. 28).
  • Yuan JH, Xu RK. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115.
  • Yuan JH, Xu RK, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497.
  • Zhang G, Guo X, Zhu Y, Han Z, He Q, Zhang F. 2017. Effect of biochar on the presence of nutrients and ryegrass growth in the soil from an abandoned indigenous coking site: The potential role of biochar in the revegetation of contaminated site. Science of the Total Environment, 601–602, 469–477.
  • Zhang H, Chen C, Gray EM, Boyd SE. 2017. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105.
  • Zhang J, You C. 2013. Water holding capacity and absorption properties of wood chars. Energy and Fuels, 27(5).
  • Zhang Y, Idowu OJ, Brewer CE. 2016. Using agricultural residue biochar to improve soil quality of desert soils. Agriculture (Switzerland), 6(1).
  • Zhao L, Cao X, Mašek O, Zimmerman A. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9.
There are 82 citations in total.

Details

Primary Language Turkish
Subjects Plant Nutrition and Soil Fertility
Journal Section Articles
Authors

Dennis Elibariki Mawalla 0009-0001-9952-2233

Coşkun Gülser 0000-0002-6332-4876

Publication Date December 21, 2023
Submission Date October 31, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Mawalla, D. E., & Gülser, C. (2023). Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu. Toprak Bilimi Ve Bitki Besleme Dergisi, 11(2), 111-121. https://doi.org/10.33409/tbbbd.1383845
AMA Mawalla DE, Gülser C. Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu. tbbbd. December 2023;11(2):111-121. doi:10.33409/tbbbd.1383845
Chicago Mawalla, Dennis Elibariki, and Coşkun Gülser. “Tarımsal kökenli atıkların Yavaş Pirolizinden Elde Edilen biyoçarların Karakterizasyonu”. Toprak Bilimi Ve Bitki Besleme Dergisi 11, no. 2 (December 2023): 111-21. https://doi.org/10.33409/tbbbd.1383845.
EndNote Mawalla DE, Gülser C (December 1, 2023) Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu. Toprak Bilimi ve Bitki Besleme Dergisi 11 2 111–121.
IEEE D. E. Mawalla and C. Gülser, “Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu”, tbbbd, vol. 11, no. 2, pp. 111–121, 2023, doi: 10.33409/tbbbd.1383845.
ISNAD Mawalla, Dennis Elibariki - Gülser, Coşkun. “Tarımsal kökenli atıkların Yavaş Pirolizinden Elde Edilen biyoçarların Karakterizasyonu”. Toprak Bilimi ve Bitki Besleme Dergisi 11/2 (December 2023), 111-121. https://doi.org/10.33409/tbbbd.1383845.
JAMA Mawalla DE, Gülser C. Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu. tbbbd. 2023;11:111–121.
MLA Mawalla, Dennis Elibariki and Coşkun Gülser. “Tarımsal kökenli atıkların Yavaş Pirolizinden Elde Edilen biyoçarların Karakterizasyonu”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 11, no. 2, 2023, pp. 111-2, doi:10.33409/tbbbd.1383845.
Vancouver Mawalla DE, Gülser C. Tarımsal kökenli atıkların yavaş pirolizinden elde edilen biyoçarların karakterizasyonu. tbbbd. 2023;11(2):111-2.