Derleme
BibTex RIS Kaynak Göster

The role of fungal volatile organic compounds (FVOCs) in biological control

Yıl 2021, Cilt: 12 Sayı: 1, 79 - 92, 30.06.2021
https://doi.org/10.31019/tbmd.818701

Öz

Organisms such as bacteria, fungi, viruses, and nematodes cause yield and quality loss in agricultural production. Especially the control of fungal pathogens is challenging. The fact that chemical pesticides used in the control of these pathogens are not environmentally friendly, increases the importance of alternative methods such as the use of biopesticides. Biopesticides that are not relatively harmful to human health and the environment are generally secondary metabolites from plants, viruses, bacteria and fungi. Fungi produce various mixtures of volatile organic compounds (VOCs). More than 300 different fungal VOCs including aldehydes, alcohols, benzene derivatives, phenols, heterocycles, hydrocarbons, ketones, cyclohexanes, thioesters, and thioalcohols have been described. The interaction between fungal VOCs and plant pathogens pose an ecofriendly alternative to chemical pesticides. Researches have shown that fungal VOCs can be used effectively with their inhibitory or repellent aspect against the plant pathogens and insect pests as a biopesticide. In this review, the possibilities of using fungal VOCs against different plant diseases and pests as an substitute to chemical pesticides within the scope of biological control are summarized.

Kaynakça

  • Alpha Cambria J., M. Campos, C. Jacobs-Wagner & S.A. Strobela, 2015. Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Applied and Environmental Microbiology, 81(3): 1147-1156.
  • Amin F.,V.K. Razdan, F.A. Mohiddin, K.A. Bhat& P.A Sheikh, 2010. Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro. Journal of Phytology, 2(10): 34-37.
  • Ascencio-Álvarez A., A. López-Benítez, F. Borrego-Escalante, S.A. Rodríguez Herrera, A. Flores-Olivas, F. Jiménez-Díaz&A.J.Gámez-Vázquez, 2008. Marchitez vascular del tomate: I. Presencia de razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología, 26: 114–120.
  • Barakat F. M.,K.A. Abada,N.M. Abou-Zeid &Y. H. E. El-Gammal, 2014. Effect of volatile and non-volatile compounds of Trichoderma spp. onBotrytis fabae the causative agent of faba bean chocolate spot. American Journal of Life Sciences, 2(6): 11-18.
  • Bennett J. W.&A.A. Inamdar, 2015. Are some fungal volatile organic compounds (VOCs) mycotoxins?. Toxins, 7(9): 3785-3804.
  • Bitas V.,H.S. Kim, J.W. Bennett & S. Kang, 2013.Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26:835-843.
  • Buzzini P.,A. Martini,F. Cappelli,U.M. Pagnoni&P. Davol, 2003. A study on volatile organic compounds (VOCs) produced by tropical ascomycetous yeasts. Antonie Van Leeuwenhoek, 84: 301-311.
  • Chen J. L.,S.Z. Sun, C.P. Miao, K.Wu, Y.W. Chen, L.H. Xu &L.X. Zhao, 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. Journal of Ginseng Research, 40(4): 315-324.
  • Coppola M.,P. Cascone, M.L. Chiusano, C. Colantuono, M. Lorito, F. Pennacchio &M.C. Digilio, 2017.Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Science, 24(6): 1025-1033.
  • Daisy B. H.,G.A. Strobel,U. Castillo, D. Ezra, J. Sears, D.K. Weaver &J.B. Runyon, 2002. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148(11): 3737-3741.
  • Deetae P.,P. Bonnarme, H.E. Spinnler&S. Helinck, 2007. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Applied Microbiology and Biotechnology, 76: 1161–1171.
  • Effmert U.,J. Kalderás, R. Warnke&B. Piechulla, 2012. Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38(6): 665-703.
  • Elke K.,J. Begerow, H. Oppermann, U. Krämer, E. Jermann&L. Dunemann, 1999. Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID — a new feasible approach for the detection of an exposure to indoor mould fungi? Journal of Environmental Monitoring, 1: 445–452.
  • Fiedler K.,E. Schütz&S. Geh, 2001. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204(2-3): 111-121.
  • Francesco A. D., L. Ugolini, L. Lazzeri & M. Mari, 2015. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81: 8-14.
  • Freire E.S.,V.P. Campos, D.F. Oliveira, A.M. Pohlit, N.P. Norberto&M.R.Faria, 2012. Volatile substances on the antagonism between fungi, bacteria and Meloidogyne incognita and potentially fungi for nematode control. Journal of Nematology, 44: 321-328.
  • Gangwar G. P.&A.P. Sinha, 2010. Comparative antagonistic potential of Trichoderma spp. against Xanthomonas oryzae pv. oryzae. Annals of Plant Protection Sciences, 18(2): 458-463.
  • Grimme E.,N.K. Zidack, R.A. Sikora,G.A. Strobel& B.J. Jacobsen, 2007. Comparison of Muscodor albus volatiles with a biorational mixture for control of seedlings diseases of sugar beet and root-knot nematode on tomato. Plant Disease 91: 220-224.
  • Harman G.E.,C.R. Howell, A. Viterbo, I. Chet&M. Lorito, 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1): 43-56.
  • Herrera, J.M.,R.P. Pizzolitto, M.P. Zunino, J.S. Dambolena&J.A. Zygadlo, 2015. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. Journal of Stored Products Research, 62: 74-80.
  • Herrmann A, 2010. The Chemistry and Biology of Volatiles. John Wiley & Sons, Chichester, U.K.
  • Hung R.,S. Lee&J.W. Bennett, 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6: 19-26.
  • Hussain A.,M.Y. Tian, Y.R. He, J.M. Bland&W.X. Gu, 2010. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biological Control, 55(3): 166-173.
  • Hynes J.,C.T. Müller, T.H. Jones&L. Boddy, 2007. Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. Journal of Chemical Ecology, 33: 43-57.
  • Keszler Á.,E. Forgács, L. Kótai, J.A. Vizcaíno, E. Monte & I. García-Acha, 2000. Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid phase extraction and gas chromatography-mass spectrometry. Journal of Chromatographic Science, 38: 421-424.
  • Korpi A.,J. Järnberg&A.L. Pasanen, 2009. Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2): 139-193.
  • Krajaejun T.,T. Lowhnoo, T. Rujirawat, W. Yingyong, S. Fucharoen &G.A. Strobel, 2012. In vitro antimicrobial effect of the volatile organic compounds from Muscodor crispans against the human pathogenic oomycete-Pythium insidiosum. Southeast Asian Journal of Tropical Medicine and Public Health, 43(6): 1474-1483.
  • Kudalkar P.,G. Strobel, S. Riyaz-Ul-Hassan, B. Geary &J. Sears, 2012. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 53(4): 319-325.
  • Kuske M.,A.C. Romain &J. Nicolas, 2005. Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments?. Building and Environment, 40(6): 824-831.
  • Lacey L.A. &L.G. Neven, 2006. The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. Journal of Invertebrate Pathology, 91: 195-198.
  • Lee S.,R. Hung, M. Yap, &J.W. Bennett, 2015. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Archives of Microbiology, 197(5): 723-727.
  • Lemfack M.C.,J. Nickel, M. Dunkel, R. Preissner &B. Piechulla, 2014. mVOC: a database of microbial volatiles. Nucleic Acid Research, 42: 744-748.
  • Li Q.,L. Wu,J. Hao, L. Luo, Y. Cao &J. Li, 2015. Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of Ceratocystis fimbriata. Plos One, 10(7): 1-16.
  • Liarzi O., P. Bucki, S. Braun Miyara &D. Ezra, 2016a). Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. Plos One, 11(12): 1-17.
  • Liarzi O.,E. Bar, E. Lewinsohn &D. Ezra, 2016b. Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PlosOne, 11(12), 1-18.
  • Macías-Rubalcava M.L.,R.E. Sánchez-Fernández, G. Roque-Flore, S. Lappe-Oliveras&Y.M. Medina-Romero, 2018. Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiology, 76: 363-373.
  • McCarter J.P., 2008. Molecular approaches toward resistance to plant-parasitic nematodes. In: Berg, R.H., Taylor, C.G. (Eds.), Cell Biology of Plant Nematode Parasitic. Plant Cell Monographs, pp. 239-267.
  • Medina-Romero Y.M.,G. Roque-Flores& M.L. Macías-Rubalcava, 2017. Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Applied Microbiology and Biotechnology, 101: 8209-8222.
  • Meena M.,P. Swapnil, A. Zehra, M.K. Dubey&R.S. Upadhyay, 2017. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Archives of Phytopathology and Plant Protection, 50(13-14): 629-648.
  • Mercier J. & J.I. Jiménez, 2004. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology, 31: 1-8.
  • Mercier J&D.C. Manker, 2005. Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Protection, 24: 355-362.
  • Meruva N.K.,J.M. Penn&D.E. Farthing, 2004. Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-offlight mass spectrometry. Journal of Industrial Microbiology & Biotechnology, 31: 482-488.
  • Meshram V.,N. Kapoor &S. Saxena, 2013.Muscodor kashayumsp. nov.–a new volatile anti-microbial producing endophytic fungus. Mycology, 4(4): 196-204.
  • Morath S.U.,R. Hung&J.W. Bennett, 2012. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26: 73-83.
  • Naher L.,U.K. Yusuf, A. Ismail&K. Hossain, 2014. Trichoderma spp.: A Biocontrol Agent for Sustainable Management of Plant Diseases. Pakistan Journal of Botany, 46(4): 1489-1493.
  • Naik B. S.,2018. Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control. Egyptian Journal of Biological Pest Control, 28: 1-9.
  • Naznin H.A.,D. Kiyohara, M. Kimura, M. Miyazawa&M Shimizu,2014. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth Promoting Fungi in Arabidopsis thaliana. Plos One, 9(1): 1-10.
  • Nemčovič M.,L. Jakubíková, I. Víden &F. Vladimír, 2008. Induction of conidiation by endogenousvolatile compounds in Trichoderma spp. FEMS Microbiology Letters, 284: 231-236.
  • Noling J.W., 2002. The practical realities of alternatives to methyl bromide: concluding remarks. Phytopathology, 92: 1373-1375.
  • Oka K.,A. Ishihara, N. Sakaguchi, S. Nishino, R.Y. Parada, A. Nakagiri&H. Otani, 2015. Antifungal activity of volatile compounds produced by an edible mushroom Hypsizygus marmoreus against phytopathogenic fungi. Journal of Phytopathology, 163: 987-996.
  • Park M.S.,J. Ahn, G.J. Choi, Y.H. Choi, K.S. Jang &J.C. Kim, 2010. Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. The Plant Pathology Journal, 26: 253-259.
  • Pinches S.E. &P. Apps, 2007. Production in food of 1, 3-pentadiene and styrene by Trichoderma species. International Journal of Food Microbiology, 116, 182-185.
  • Petrini O., 1991. Fungal endophytes of tree leaves. In: Microbial Ecology of Leaves (eds) Andrews, J.H. and Hirano, S.S. Springer-Verlag, New York, USA,179-197.
  • Rasmann S.,T.G. Köllner, J. Degenhardt, I. Hiltpold, S. Toepfer, U. Kuhlmann, J. Gershenzon&T.C.J. Turlings, 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434: 732-737.
  • Reino J.L.,R.F. Guerrero, R. Hernández-Galán &I.G. Collado, 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1): 89-123.
  • Reithner B.,K. Brunner, R. Schuhmacher, P. Peissl, V. Seidl, R. Krska&S. Zeilinger, 2005. The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetic Biology, 42: 749-760.
  • Riga E.,L.A. Lacey &N. Guerra, 2008. Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biological Control, 45(3): 380-385.
  • Rouissi W.,L. Ugolini, C. Martini, L. Lazzeri&M. Mari, 2013. Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. Journal of Food Protection, 11: 1879-1993.
  • Sánchez-Fernández R. E.,D. Diaz, G. Duarte, P. Lappe-Oliveras, S. Sánchez, &M.L. Macías-Rubalcava, 2016. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microbial Ecology, 71(2): 347-364.
  • Sasser J.N., 1980. Root-knot nematodes Meloidogyne: a global menace to crop production [ Includes activities and principal research findings of the International Meloidogyne Project (IMP)]. Plant Disease, 64: 36–41.
  • Schalchli H.,E. Hormazabal, J. Becerra, M. Birkett, M. Alvear, J. Vidal, &A. Quiroz, 2011. Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chemistry and Ecology, 27(6): 503-513.
  • Schalchli H., E. Hormazábal, J. Becerra, G. Briceño, V. Hernández, O. Rubilar &M. C. Diez, 2015. Volatiles from white-rot fungi for controlling plant pathogenic fungi. Chemistry and Ecology, 31(8): 754–763.
  • Schmidt R.,D.W. Etalo, V. de Jager, S. Gerards, H. Zweers, W. de Boer & P. Garbeva, 2016. Microbial small talk: Volatiles in fungal–bacterial interactions. Frontiers in Microbiology, 6: 1-11.
  • Stinson A.M.,N.K. Zidack, G.A. Strobel &B.J. Jacobsen, 2003. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Disease,87:1349-1354.
  • Stoppacher N.,B. Kluger, S. Zeilinger, R. Krska &R. Schuhmacher, 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 81(2): 187-193.
  • Strobel G.A., E. Dirkse, J. Sears & C. Markworth, 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147(11): 2943-2950.
  • Strobel G, 2011. Muscodor species-endophytes with biological promise. Phytochemistry Reviews, 10(2): 165-172.
  • Terra W.C.,V. P. Campos, S. J. Martins, L. S. A. S. Costa, J. C. Pereira da Silva, A.F. Barros, L.E. Lopez, T.C.N. Santos, G. Smant&D.F. Oliveira, 2018. Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita. Crop Protection, 106: 125-131.
  • Wang A.,M. Haapalainen, S. Latvala, M. Edelenbos&A. Johansen, 2018. Discriminant analysis of volatile organic compounds of Fusarium oxysporum f. sp. cepae and Fusarium proliferatum isolates from onions as indicators of fungal growth. Fungal Biology, 122: 1013-1022.
  • Wang Y.,Y. Li, J. Yang, J. Ruan&C. Sun, 2016. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. TrAC Trends in Analytical Chemistry, 78: 1-16.
  • Wheatley R.E, C. Hackett, A. Bruce & A. Kundzewicz, 1997. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. Inhibitory to wood decay fungi. International Biodeterioration and Biodegredation, 39: 199-205.
  • Wheatley R. E., 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, 81: 357-364.
  • Yang Z.,Z. Yu, L. Lei, Z. Xia, L. Shao, K. Zhang, &G. Li, 2012. Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology, 15(4): 647-650.
  • Zhang Q.,L. Yang, J. Zhang, M. Wu, W. Chen, D. Jiang, G. Li, 2015. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil, 392: 101–114.

Biyolojik mücadelede fungal uçucu organik bileşiklerin (FVOCs) rolü

Yıl 2021, Cilt: 12 Sayı: 1, 79 - 92, 30.06.2021
https://doi.org/10.31019/tbmd.818701

Öz

Tarımsal üretimde bakteri, fungus, virüs ve nematod gibi organizmalar verim ve kalite kaybına neden olur. Özellikle fungus patojenlerinin kontrolü zordur. Bu patojenlerin kontrolünde kullanılan kimyasal pestisitlerin çevre dostu olmaması, biyopestisit kullanımı gibi alternatif yöntemlerin önemini artırmaktadır. İnsan sağlığına ve çevreye göreceli olarak zararlı olmayan biyopestisitler genellikle bitkilerden, virüslerden, bakterilerden ve funguslardan elde edilen ikincil metabolitlerdir. Funguslar, çeşitli uçucu organik bileşiklerin (VOC'ler) karışımlarını üretir. Aldehitler, alkoller, benzen türevleri, fenoller, heterosikler, hidrokarbonlar, ketonlar, sikloheksanlar, tiyoesterler ve tiyoalkollere ait 300'den fazla farklı fungus VOC'si tanımlanmıştır. Fungal VOC'ler ile bitki patojenleri arasındaki etkileşim, kimyasal pestisitlere çevre dostu bir alternatif oluşturmaktadır. Araştırmalar, fungus uçucu organik bileşiklerin bitki patojenlerine ve böcek zararlılarına karşı önleyici veya kovucu yönleriyle biyopestisit olarak etkili bir şekilde kullanılabileceğini göstermiştir. Bu derlemede, biyolojik mücadele kapsamında kimyasal pestisitlere alternatif olarak farklı bitki hastalık ve zararlılarına karşı fungal uçucu organik bileşiklerin kullanılma olanakları özetlenmiştir.

Kaynakça

  • Alpha Cambria J., M. Campos, C. Jacobs-Wagner & S.A. Strobela, 2015. Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Applied and Environmental Microbiology, 81(3): 1147-1156.
  • Amin F.,V.K. Razdan, F.A. Mohiddin, K.A. Bhat& P.A Sheikh, 2010. Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro. Journal of Phytology, 2(10): 34-37.
  • Ascencio-Álvarez A., A. López-Benítez, F. Borrego-Escalante, S.A. Rodríguez Herrera, A. Flores-Olivas, F. Jiménez-Díaz&A.J.Gámez-Vázquez, 2008. Marchitez vascular del tomate: I. Presencia de razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Revista Mexicana de Fitopatología, 26: 114–120.
  • Barakat F. M.,K.A. Abada,N.M. Abou-Zeid &Y. H. E. El-Gammal, 2014. Effect of volatile and non-volatile compounds of Trichoderma spp. onBotrytis fabae the causative agent of faba bean chocolate spot. American Journal of Life Sciences, 2(6): 11-18.
  • Bennett J. W.&A.A. Inamdar, 2015. Are some fungal volatile organic compounds (VOCs) mycotoxins?. Toxins, 7(9): 3785-3804.
  • Bitas V.,H.S. Kim, J.W. Bennett & S. Kang, 2013.Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26:835-843.
  • Buzzini P.,A. Martini,F. Cappelli,U.M. Pagnoni&P. Davol, 2003. A study on volatile organic compounds (VOCs) produced by tropical ascomycetous yeasts. Antonie Van Leeuwenhoek, 84: 301-311.
  • Chen J. L.,S.Z. Sun, C.P. Miao, K.Wu, Y.W. Chen, L.H. Xu &L.X. Zhao, 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. Journal of Ginseng Research, 40(4): 315-324.
  • Coppola M.,P. Cascone, M.L. Chiusano, C. Colantuono, M. Lorito, F. Pennacchio &M.C. Digilio, 2017.Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Science, 24(6): 1025-1033.
  • Daisy B. H.,G.A. Strobel,U. Castillo, D. Ezra, J. Sears, D.K. Weaver &J.B. Runyon, 2002. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148(11): 3737-3741.
  • Deetae P.,P. Bonnarme, H.E. Spinnler&S. Helinck, 2007. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Applied Microbiology and Biotechnology, 76: 1161–1171.
  • Effmert U.,J. Kalderás, R. Warnke&B. Piechulla, 2012. Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38(6): 665-703.
  • Elke K.,J. Begerow, H. Oppermann, U. Krämer, E. Jermann&L. Dunemann, 1999. Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID — a new feasible approach for the detection of an exposure to indoor mould fungi? Journal of Environmental Monitoring, 1: 445–452.
  • Fiedler K.,E. Schütz&S. Geh, 2001. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204(2-3): 111-121.
  • Francesco A. D., L. Ugolini, L. Lazzeri & M. Mari, 2015. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81: 8-14.
  • Freire E.S.,V.P. Campos, D.F. Oliveira, A.M. Pohlit, N.P. Norberto&M.R.Faria, 2012. Volatile substances on the antagonism between fungi, bacteria and Meloidogyne incognita and potentially fungi for nematode control. Journal of Nematology, 44: 321-328.
  • Gangwar G. P.&A.P. Sinha, 2010. Comparative antagonistic potential of Trichoderma spp. against Xanthomonas oryzae pv. oryzae. Annals of Plant Protection Sciences, 18(2): 458-463.
  • Grimme E.,N.K. Zidack, R.A. Sikora,G.A. Strobel& B.J. Jacobsen, 2007. Comparison of Muscodor albus volatiles with a biorational mixture for control of seedlings diseases of sugar beet and root-knot nematode on tomato. Plant Disease 91: 220-224.
  • Harman G.E.,C.R. Howell, A. Viterbo, I. Chet&M. Lorito, 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1): 43-56.
  • Herrera, J.M.,R.P. Pizzolitto, M.P. Zunino, J.S. Dambolena&J.A. Zygadlo, 2015. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. Journal of Stored Products Research, 62: 74-80.
  • Herrmann A, 2010. The Chemistry and Biology of Volatiles. John Wiley & Sons, Chichester, U.K.
  • Hung R.,S. Lee&J.W. Bennett, 2013. Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6: 19-26.
  • Hussain A.,M.Y. Tian, Y.R. He, J.M. Bland&W.X. Gu, 2010. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles. Biological Control, 55(3): 166-173.
  • Hynes J.,C.T. Müller, T.H. Jones&L. Boddy, 2007. Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. Journal of Chemical Ecology, 33: 43-57.
  • Keszler Á.,E. Forgács, L. Kótai, J.A. Vizcaíno, E. Monte & I. García-Acha, 2000. Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid phase extraction and gas chromatography-mass spectrometry. Journal of Chromatographic Science, 38: 421-424.
  • Korpi A.,J. Järnberg&A.L. Pasanen, 2009. Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2): 139-193.
  • Krajaejun T.,T. Lowhnoo, T. Rujirawat, W. Yingyong, S. Fucharoen &G.A. Strobel, 2012. In vitro antimicrobial effect of the volatile organic compounds from Muscodor crispans against the human pathogenic oomycete-Pythium insidiosum. Southeast Asian Journal of Tropical Medicine and Public Health, 43(6): 1474-1483.
  • Kudalkar P.,G. Strobel, S. Riyaz-Ul-Hassan, B. Geary &J. Sears, 2012. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 53(4): 319-325.
  • Kuske M.,A.C. Romain &J. Nicolas, 2005. Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments?. Building and Environment, 40(6): 824-831.
  • Lacey L.A. &L.G. Neven, 2006. The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. Journal of Invertebrate Pathology, 91: 195-198.
  • Lee S.,R. Hung, M. Yap, &J.W. Bennett, 2015. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Archives of Microbiology, 197(5): 723-727.
  • Lemfack M.C.,J. Nickel, M. Dunkel, R. Preissner &B. Piechulla, 2014. mVOC: a database of microbial volatiles. Nucleic Acid Research, 42: 744-748.
  • Li Q.,L. Wu,J. Hao, L. Luo, Y. Cao &J. Li, 2015. Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of Ceratocystis fimbriata. Plos One, 10(7): 1-16.
  • Liarzi O., P. Bucki, S. Braun Miyara &D. Ezra, 2016a). Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. Plos One, 11(12): 1-17.
  • Liarzi O.,E. Bar, E. Lewinsohn &D. Ezra, 2016b. Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PlosOne, 11(12), 1-18.
  • Macías-Rubalcava M.L.,R.E. Sánchez-Fernández, G. Roque-Flore, S. Lappe-Oliveras&Y.M. Medina-Romero, 2018. Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiology, 76: 363-373.
  • McCarter J.P., 2008. Molecular approaches toward resistance to plant-parasitic nematodes. In: Berg, R.H., Taylor, C.G. (Eds.), Cell Biology of Plant Nematode Parasitic. Plant Cell Monographs, pp. 239-267.
  • Medina-Romero Y.M.,G. Roque-Flores& M.L. Macías-Rubalcava, 2017. Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Applied Microbiology and Biotechnology, 101: 8209-8222.
  • Meena M.,P. Swapnil, A. Zehra, M.K. Dubey&R.S. Upadhyay, 2017. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Archives of Phytopathology and Plant Protection, 50(13-14): 629-648.
  • Mercier J. & J.I. Jiménez, 2004. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology, 31: 1-8.
  • Mercier J&D.C. Manker, 2005. Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Protection, 24: 355-362.
  • Meruva N.K.,J.M. Penn&D.E. Farthing, 2004. Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-offlight mass spectrometry. Journal of Industrial Microbiology & Biotechnology, 31: 482-488.
  • Meshram V.,N. Kapoor &S. Saxena, 2013.Muscodor kashayumsp. nov.–a new volatile anti-microbial producing endophytic fungus. Mycology, 4(4): 196-204.
  • Morath S.U.,R. Hung&J.W. Bennett, 2012. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26: 73-83.
  • Naher L.,U.K. Yusuf, A. Ismail&K. Hossain, 2014. Trichoderma spp.: A Biocontrol Agent for Sustainable Management of Plant Diseases. Pakistan Journal of Botany, 46(4): 1489-1493.
  • Naik B. S.,2018. Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control. Egyptian Journal of Biological Pest Control, 28: 1-9.
  • Naznin H.A.,D. Kiyohara, M. Kimura, M. Miyazawa&M Shimizu,2014. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth Promoting Fungi in Arabidopsis thaliana. Plos One, 9(1): 1-10.
  • Nemčovič M.,L. Jakubíková, I. Víden &F. Vladimír, 2008. Induction of conidiation by endogenousvolatile compounds in Trichoderma spp. FEMS Microbiology Letters, 284: 231-236.
  • Noling J.W., 2002. The practical realities of alternatives to methyl bromide: concluding remarks. Phytopathology, 92: 1373-1375.
  • Oka K.,A. Ishihara, N. Sakaguchi, S. Nishino, R.Y. Parada, A. Nakagiri&H. Otani, 2015. Antifungal activity of volatile compounds produced by an edible mushroom Hypsizygus marmoreus against phytopathogenic fungi. Journal of Phytopathology, 163: 987-996.
  • Park M.S.,J. Ahn, G.J. Choi, Y.H. Choi, K.S. Jang &J.C. Kim, 2010. Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. The Plant Pathology Journal, 26: 253-259.
  • Pinches S.E. &P. Apps, 2007. Production in food of 1, 3-pentadiene and styrene by Trichoderma species. International Journal of Food Microbiology, 116, 182-185.
  • Petrini O., 1991. Fungal endophytes of tree leaves. In: Microbial Ecology of Leaves (eds) Andrews, J.H. and Hirano, S.S. Springer-Verlag, New York, USA,179-197.
  • Rasmann S.,T.G. Köllner, J. Degenhardt, I. Hiltpold, S. Toepfer, U. Kuhlmann, J. Gershenzon&T.C.J. Turlings, 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434: 732-737.
  • Reino J.L.,R.F. Guerrero, R. Hernández-Galán &I.G. Collado, 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1): 89-123.
  • Reithner B.,K. Brunner, R. Schuhmacher, P. Peissl, V. Seidl, R. Krska&S. Zeilinger, 2005. The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetic Biology, 42: 749-760.
  • Riga E.,L.A. Lacey &N. Guerra, 2008. Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biological Control, 45(3): 380-385.
  • Rouissi W.,L. Ugolini, C. Martini, L. Lazzeri&M. Mari, 2013. Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. Journal of Food Protection, 11: 1879-1993.
  • Sánchez-Fernández R. E.,D. Diaz, G. Duarte, P. Lappe-Oliveras, S. Sánchez, &M.L. Macías-Rubalcava, 2016. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microbial Ecology, 71(2): 347-364.
  • Sasser J.N., 1980. Root-knot nematodes Meloidogyne: a global menace to crop production [ Includes activities and principal research findings of the International Meloidogyne Project (IMP)]. Plant Disease, 64: 36–41.
  • Schalchli H.,E. Hormazabal, J. Becerra, M. Birkett, M. Alvear, J. Vidal, &A. Quiroz, 2011. Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chemistry and Ecology, 27(6): 503-513.
  • Schalchli H., E. Hormazábal, J. Becerra, G. Briceño, V. Hernández, O. Rubilar &M. C. Diez, 2015. Volatiles from white-rot fungi for controlling plant pathogenic fungi. Chemistry and Ecology, 31(8): 754–763.
  • Schmidt R.,D.W. Etalo, V. de Jager, S. Gerards, H. Zweers, W. de Boer & P. Garbeva, 2016. Microbial small talk: Volatiles in fungal–bacterial interactions. Frontiers in Microbiology, 6: 1-11.
  • Stinson A.M.,N.K. Zidack, G.A. Strobel &B.J. Jacobsen, 2003. Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Disease,87:1349-1354.
  • Stoppacher N.,B. Kluger, S. Zeilinger, R. Krska &R. Schuhmacher, 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 81(2): 187-193.
  • Strobel G.A., E. Dirkse, J. Sears & C. Markworth, 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147(11): 2943-2950.
  • Strobel G, 2011. Muscodor species-endophytes with biological promise. Phytochemistry Reviews, 10(2): 165-172.
  • Terra W.C.,V. P. Campos, S. J. Martins, L. S. A. S. Costa, J. C. Pereira da Silva, A.F. Barros, L.E. Lopez, T.C.N. Santos, G. Smant&D.F. Oliveira, 2018. Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita. Crop Protection, 106: 125-131.
  • Wang A.,M. Haapalainen, S. Latvala, M. Edelenbos&A. Johansen, 2018. Discriminant analysis of volatile organic compounds of Fusarium oxysporum f. sp. cepae and Fusarium proliferatum isolates from onions as indicators of fungal growth. Fungal Biology, 122: 1013-1022.
  • Wang Y.,Y. Li, J. Yang, J. Ruan&C. Sun, 2016. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. TrAC Trends in Analytical Chemistry, 78: 1-16.
  • Wheatley R.E, C. Hackett, A. Bruce & A. Kundzewicz, 1997. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. Inhibitory to wood decay fungi. International Biodeterioration and Biodegredation, 39: 199-205.
  • Wheatley R. E., 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, 81: 357-364.
  • Yang Z.,Z. Yu, L. Lei, Z. Xia, L. Shao, K. Zhang, &G. Li, 2012. Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology, 15(4): 647-650.
  • Zhang Q.,L. Yang, J. Zhang, M. Wu, W. Chen, D. Jiang, G. Li, 2015. Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant Soil, 392: 101–114.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Ayşegül Karslı 0000-0002-8711-0207

Yavuz Selim Şahin 0000-0002-9965-0163

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 30 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 1

Kaynak Göster

APA Karslı, A., & Şahin, Y. S. (2021). The role of fungal volatile organic compounds (FVOCs) in biological control. Türkiye Biyolojik Mücadele Dergisi, 12(1), 79-92. https://doi.org/10.31019/tbmd.818701
AMA Karslı A, Şahin YS. The role of fungal volatile organic compounds (FVOCs) in biological control. Türk. biyo. müc. derg. Haziran 2021;12(1):79-92. doi:10.31019/tbmd.818701
Chicago Karslı, Ayşegül, ve Yavuz Selim Şahin. “The Role of Fungal Volatile Organic Compounds (FVOCs) in Biological Control”. Türkiye Biyolojik Mücadele Dergisi 12, sy. 1 (Haziran 2021): 79-92. https://doi.org/10.31019/tbmd.818701.
EndNote Karslı A, Şahin YS (01 Haziran 2021) The role of fungal volatile organic compounds (FVOCs) in biological control. Türkiye Biyolojik Mücadele Dergisi 12 1 79–92.
IEEE A. Karslı ve Y. S. Şahin, “The role of fungal volatile organic compounds (FVOCs) in biological control”, Türk. biyo. müc. derg, c. 12, sy. 1, ss. 79–92, 2021, doi: 10.31019/tbmd.818701.
ISNAD Karslı, Ayşegül - Şahin, Yavuz Selim. “The Role of Fungal Volatile Organic Compounds (FVOCs) in Biological Control”. Türkiye Biyolojik Mücadele Dergisi 12/1 (Haziran 2021), 79-92. https://doi.org/10.31019/tbmd.818701.
JAMA Karslı A, Şahin YS. The role of fungal volatile organic compounds (FVOCs) in biological control. Türk. biyo. müc. derg. 2021;12:79–92.
MLA Karslı, Ayşegül ve Yavuz Selim Şahin. “The Role of Fungal Volatile Organic Compounds (FVOCs) in Biological Control”. Türkiye Biyolojik Mücadele Dergisi, c. 12, sy. 1, 2021, ss. 79-92, doi:10.31019/tbmd.818701.
Vancouver Karslı A, Şahin YS. The role of fungal volatile organic compounds (FVOCs) in biological control. Türk. biyo. müc. derg. 2021;12(1):79-92.