Research Article
BibTex RIS Cite
Year 2024, , 66 - 73, 19.09.2024
https://doi.org/10.33435/tcandtc.1349520

Abstract

References

  • [1] T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: The story told so far, Energy Reports 6 (2020) 1973–1991.
  • [2] J. Lelievelda, K. Klingmüller, A. Pozzer, R. T. Burnett, A. Haines, V. Ramanathan, Effects of fossil fuel and total anthropogenic emission removal on public health and climate, PNAS 116(15) (2019) 7192–7197.
  • [3] C. Arndt, D. Arent, F. Hartley, B. Merven, A. H. Mondal, Faster Than You Think: Renewable Energy and Developing Countries, Annu. Rev. Resour. Econ. 11 (2019) 149–168.
  • [4] A. Slameršak, G. Kallis, D. W. O’Neill, Energy requirements and carbon emissions for a low-carbon energy transition, Nature Communications 13 (2022) 6932.
  • [5] M.J. (Mariska) de Wild-Scholten, Energy payback time and carbon footprint of commercial photovoltaic systems, Solar Energy Materials & Solar Cells 119 (2013) 296–305.
  • [6] H. S. Jung, J.-K. Lee, Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems, J. Phys. Chem. Lett. 4 (2013) 1682−1693.
  • [7] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature volume 353 (1991) 737–740.
  • [8] K. Sharma, V. Sharma, S. S. Sharma, Dye-Sensitized Solar Cells: Fundamentals and Current Status, Nanoscale Research Letters 13 (2018) 381.
  • [9] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev. 110 (2010) 6595–6663.
  • [10] D. Thetford, “Triphenylmethane and Related Dyes”, Kirk-Othmer Encyclopedia of Chemical Technology, 2013, . John Wiley & Sons, Inc.,
  • [11] D. F. Duxbury, The Photochemistry and Photophysics of Triphenylmethane Dyes in Solid and Liquid Media, Chem. Rev. 93 (1993) 381 – 433.
  • [12] J.-B.Harlé, S. Arata, S. Mine, T. Kamegawa, V. T. Nguyen, T. Maeda, H. Nakazumi, H. Fujiwara, Malachite Green Derivatives for Dye-sensitized Solar Cells: Optoelectronic Characterizations and Persistence on TiO2, Bulletin of the Chemical Society of Japan, .91 (1) (2018) 52-64.
  • [13] L. Zhang, J. M. Cole, Anchoring Groups for Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces 7 (2015) 3427−3455.
  • [14] X. Liu, J. M. Cole, P. C. Y. Chow, L. Zhang, Y. Tan, T. Zhao, Dye Aggregation and Complex Formation Effects in 7‑(Diethylamino)-coumarin-3-carboxylic Acid, J. Phys. Chem. C 118 (24) (2014) 13042–13051.
  • [15] A. D. Hunter, ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0, J. Chem. Educ. 74 (8) (1997) 905.
  • [16] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, The ORCA quantum chemistry program package, J. Chem. Phys. 152 (2020) 224108
  • [17] S. Grimme, J. G.Brandenburg, C. Bannwarth, A. Hansen, Consistent structures and interactions by density functional theory with small atomic orbital basis sets, The Journal of Chemical Physics, 143(5) (2015) 054107.
  • [18] M. D. Hanwell, D. E. Curtis, D. C.Lonie, T. Vandermeersch,E. Zurek, G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics 4 (2012) 17.
  • [19] N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, cclib: A Library for Package-Independent Computational Chemistry Algorithms, J Comput Chem 29 (2008) 839–845.
  • [20] T. Gessner, U. Mayer, Triarylmethane and Diarylmethane Dyes, Ullmann's Encyclopedia of Industrial Chemistry, 2000,
  • [21] N. M. Monezi, L. F. Lepre, R. A. Ando, Unraveling the Solvatochromism of a Triarylmethane Dye by Resonance Raman Spectroscopy, Quimica. Nova 42 (9) (2019) 1116-1121.
  • [22] S. Paek, H. Choi, H. Choi, C.-W. Lee, K. Song, M. K. Nazeeruddin and J. Ko, Molecular engineering of efficient organic sensitizers incorporating a binary π-conjugated linker unit for dye- sensitized solar cells, J. Phys. Chem. C, 114 (2010) 14646–14653.
  • [23] N. I. Němec, The voltammetry of triarylmethane dyes in acetonitrile, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 30 (3) (1971) 506-510.

Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells

Year 2024, , 66 - 73, 19.09.2024
https://doi.org/10.33435/tcandtc.1349520

Abstract

Triarylmethanes are low cost synthetic dyes with intense absorption in the visible spectrum. This make it attractive to explore their suitability as sensitizer for dye sensitized solar cell. Using malachite green as a lead dye, we made intuitive structural modifications: incorporation of coumarin-3-carboxylic acid as acceptor/anchor, and substituting one or the two N, N-diethylaniline donors with N-propyl-1,6dimethyllutidine(s). The three resulting triarylmethane-coumarin structures were subjected to DFT calculations to investigate their suitability as sensitizers for DSSC applications. The calculation results showed that triarylmethane-coumarins with cationic type chromophores are unsuitable as DSSC sensitizer. The acceptor/anchor, coumarin-3-carboxylic acid, is basically excluded in the intramolecular charge transfer processes of the cationic dyes. Also, the LUMO levels of the cationic dyes are below the conduction band of TiO2, which is energetically uphill to electron injection into TiO2. Ultimately, the cationic triarylmethane-coumarin derivatives are unsuitable as sensitizer for DSSC. However, a charge-free triarylmethane-coumarin derivative shows promise as a sensitizer candidate for DSSC application.

References

  • [1] T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: The story told so far, Energy Reports 6 (2020) 1973–1991.
  • [2] J. Lelievelda, K. Klingmüller, A. Pozzer, R. T. Burnett, A. Haines, V. Ramanathan, Effects of fossil fuel and total anthropogenic emission removal on public health and climate, PNAS 116(15) (2019) 7192–7197.
  • [3] C. Arndt, D. Arent, F. Hartley, B. Merven, A. H. Mondal, Faster Than You Think: Renewable Energy and Developing Countries, Annu. Rev. Resour. Econ. 11 (2019) 149–168.
  • [4] A. Slameršak, G. Kallis, D. W. O’Neill, Energy requirements and carbon emissions for a low-carbon energy transition, Nature Communications 13 (2022) 6932.
  • [5] M.J. (Mariska) de Wild-Scholten, Energy payback time and carbon footprint of commercial photovoltaic systems, Solar Energy Materials & Solar Cells 119 (2013) 296–305.
  • [6] H. S. Jung, J.-K. Lee, Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems, J. Phys. Chem. Lett. 4 (2013) 1682−1693.
  • [7] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature volume 353 (1991) 737–740.
  • [8] K. Sharma, V. Sharma, S. S. Sharma, Dye-Sensitized Solar Cells: Fundamentals and Current Status, Nanoscale Research Letters 13 (2018) 381.
  • [9] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev. 110 (2010) 6595–6663.
  • [10] D. Thetford, “Triphenylmethane and Related Dyes”, Kirk-Othmer Encyclopedia of Chemical Technology, 2013, . John Wiley & Sons, Inc.,
  • [11] D. F. Duxbury, The Photochemistry and Photophysics of Triphenylmethane Dyes in Solid and Liquid Media, Chem. Rev. 93 (1993) 381 – 433.
  • [12] J.-B.Harlé, S. Arata, S. Mine, T. Kamegawa, V. T. Nguyen, T. Maeda, H. Nakazumi, H. Fujiwara, Malachite Green Derivatives for Dye-sensitized Solar Cells: Optoelectronic Characterizations and Persistence on TiO2, Bulletin of the Chemical Society of Japan, .91 (1) (2018) 52-64.
  • [13] L. Zhang, J. M. Cole, Anchoring Groups for Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces 7 (2015) 3427−3455.
  • [14] X. Liu, J. M. Cole, P. C. Y. Chow, L. Zhang, Y. Tan, T. Zhao, Dye Aggregation and Complex Formation Effects in 7‑(Diethylamino)-coumarin-3-carboxylic Acid, J. Phys. Chem. C 118 (24) (2014) 13042–13051.
  • [15] A. D. Hunter, ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its Tautomers, Dictionary, and 3D Plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0, J. Chem. Educ. 74 (8) (1997) 905.
  • [16] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, The ORCA quantum chemistry program package, J. Chem. Phys. 152 (2020) 224108
  • [17] S. Grimme, J. G.Brandenburg, C. Bannwarth, A. Hansen, Consistent structures and interactions by density functional theory with small atomic orbital basis sets, The Journal of Chemical Physics, 143(5) (2015) 054107.
  • [18] M. D. Hanwell, D. E. Curtis, D. C.Lonie, T. Vandermeersch,E. Zurek, G. R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics 4 (2012) 17.
  • [19] N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, cclib: A Library for Package-Independent Computational Chemistry Algorithms, J Comput Chem 29 (2008) 839–845.
  • [20] T. Gessner, U. Mayer, Triarylmethane and Diarylmethane Dyes, Ullmann's Encyclopedia of Industrial Chemistry, 2000,
  • [21] N. M. Monezi, L. F. Lepre, R. A. Ando, Unraveling the Solvatochromism of a Triarylmethane Dye by Resonance Raman Spectroscopy, Quimica. Nova 42 (9) (2019) 1116-1121.
  • [22] S. Paek, H. Choi, H. Choi, C.-W. Lee, K. Song, M. K. Nazeeruddin and J. Ko, Molecular engineering of efficient organic sensitizers incorporating a binary π-conjugated linker unit for dye- sensitized solar cells, J. Phys. Chem. C, 114 (2010) 14646–14653.
  • [23] N. I. Němec, The voltammetry of triarylmethane dyes in acetonitrile, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 30 (3) (1971) 506-510.
There are 23 citations in total.

Details

Primary Language English
Subjects Photochemistry, Physical Chemistry (Other)
Journal Section Research Article
Authors

Richard Adeleke 0009-0008-7424-5621

Idayat Sulaıman 0009-0003-6909-0948

Sunday Wilson Balogun 0000-0002-7034-5464

Wahab Osunniran 0000-0001-6219-4056

Sikiru Ahmed 0000-0002-6402-033X

Olusola James 0000-0002-5228-3693

Early Pub Date March 4, 2024
Publication Date September 19, 2024
Submission Date August 24, 2023
Published in Issue Year 2024

Cite

APA Adeleke, R., Sulaıman, I., Balogun, S. W., Osunniran, W., et al. (2024). Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells. Turkish Computational and Theoretical Chemistry, 8(3), 66-73. https://doi.org/10.33435/tcandtc.1349520
AMA Adeleke R, Sulaıman I, Balogun SW, Osunniran W, Ahmed S, James O. Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells. Turkish Comp Theo Chem (TC&TC). September 2024;8(3):66-73. doi:10.33435/tcandtc.1349520
Chicago Adeleke, Richard, Idayat Sulaıman, Sunday Wilson Balogun, Wahab Osunniran, Sikiru Ahmed, and Olusola James. “Computational Studies of Suitability of Triarylmethane-Coumarins As Sensitizer for Dye-Sensitized Solar Cells”. Turkish Computational and Theoretical Chemistry 8, no. 3 (September 2024): 66-73. https://doi.org/10.33435/tcandtc.1349520.
EndNote Adeleke R, Sulaıman I, Balogun SW, Osunniran W, Ahmed S, James O (September 1, 2024) Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells. Turkish Computational and Theoretical Chemistry 8 3 66–73.
IEEE R. Adeleke, I. Sulaıman, S. W. Balogun, W. Osunniran, S. Ahmed, and O. James, “Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells”, Turkish Comp Theo Chem (TC&TC), vol. 8, no. 3, pp. 66–73, 2024, doi: 10.33435/tcandtc.1349520.
ISNAD Adeleke, Richard et al. “Computational Studies of Suitability of Triarylmethane-Coumarins As Sensitizer for Dye-Sensitized Solar Cells”. Turkish Computational and Theoretical Chemistry 8/3 (September 2024), 66-73. https://doi.org/10.33435/tcandtc.1349520.
JAMA Adeleke R, Sulaıman I, Balogun SW, Osunniran W, Ahmed S, James O. Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells. Turkish Comp Theo Chem (TC&TC). 2024;8:66–73.
MLA Adeleke, Richard et al. “Computational Studies of Suitability of Triarylmethane-Coumarins As Sensitizer for Dye-Sensitized Solar Cells”. Turkish Computational and Theoretical Chemistry, vol. 8, no. 3, 2024, pp. 66-73, doi:10.33435/tcandtc.1349520.
Vancouver Adeleke R, Sulaıman I, Balogun SW, Osunniran W, Ahmed S, James O. Computational Studies of Suitability of Triarylmethane-Coumarins as Sensitizer for Dye-Sensitized Solar Cells. Turkish Comp Theo Chem (TC&TC). 2024;8(3):66-73.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)