Research Article
BibTex RIS Cite

Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage

Year 2022, Volume: 6 Issue: 2, 38 - 48, 15.12.2022
https://doi.org/10.33435/tcandtc.1080492

Abstract

It has been performed hydrogen adsorption on four metallo-porphyrin complexes by Density Functional Theory (DFT) calculations at room temperature. The WB97XD hybrid formalism method was used for hydrogen adsorption on metallo-porphyrin complexes formed with alkaline metal and alkaline earth metal (Na, K, Mg and Ca) atoms. It was determined that the adsorption energies for all complexes were negative, so that each of them could be a potential adsorbent for hydrogen storage. The adsorption enthalpy (ΔH) was calculated as -21.9 kJ/mol for the Na-Porphyrin (Na-P) complex structure. Moreover, the gravimetric hydrogen storage capacity for the Na-P complex was calculated to be ≈5.5 wt%. Thus, the DOE's target for 2025 has been achieved. In addition, van der Waals weak interactions were found to be effective in hydrogen adsorption and storage studies. Based on the electronic properties the metallo-porphyrin complexes could not be used as electronic sensors against the hydrogen molecule.

Thanks

The numerical calculations reported in this paper were in part completed at ULAKBIM TUBITAK, High Performance and Grid Computing Center (the resources of TRUBA).

References

  • [1] E. Baydir, Ö. Aras, Methanol steam reforming in a microchannel reactor coated with spray pyrolysis method for durable Cu/ZnO nanocatalyst, Journal of Analytical Applied Pyrolysis 158 (2021) 105278.
  • [2] E. Boateng, A., Chen, Recent advances in nanomaterial-based solid-state hydrogen storage, Materials Today Advances 6 (2020) 100022.
  • [3] Y. Pang, W. Li, J. Zhang, Gas adsorption in Mg-porphyrin-based porous organic frameworks: A computational simulation by first-principles derived force field, Journal Computational Chemistry 38 (2017) 2100-7.
  • [4] S.P. Shet, S.S. Priya, K. Sudhakar, M. Tahir, A review on current trends in potential use of metal-organic framework for hydrogen storage, International Journal of Hydrogen Energy 46 (2021) 11782-803.
  • [5] J. Xu, X. Liu, Z. Zhou, M. Xu, Photocatalytic CO2 reduction catalyzed by metalloporphyrin: Understanding of cobalt and nickel sites in activity and adsorption, Applied Surface Science 513 (2020) 145801.
  • [6] A. Saeidipoor, S. Arshadi, M.R. Benam, The Titano-Porphyrin doped pillared graphene as a novel “turn-off” fluorescent sensor for CO gas: Theoretical study, Physica E: Low-dimensional Systems and Nanostructures 127 (2021) 114554.
  • [7] P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang et al., Metal-porphyrin: a potential catalyst for direct decomposition of N(2)O by theoretical reaction mechanism investigation, Environmental Science Technology 48 (2014) 7101-10.
  • [8] J. Yu, S. Zhu, P. Chen, G-T. Zhu, X. Jiang, S. Di, Adsorption behavior and mechanism of Pb(II) on a novel and effective porphyrin-based magnetic nanocomposite, Applied Surface Science 484 (2019) 124-34.
  • [9] A.E. Kuznetsov, Hexabenzocoronene functionalized with porphyrin and P-core-modified porphyrin: A comparative computational study, Computational Theoretical Chemistry 1188 (2020) 112973.
  • [10] X. Du, H. Zhang, Y. Lu, A-H. Wang, P. Shi, Z-S. Li, Fluorination reaction on an inactive sp3 Csingle bondH bond mediated by manganese porphyrin catalysts: A theoretical study, Computational Theoretical Chemistry 1115 (2017) 330-334.
  • [11] P. Liu, F. Liu, Y. Peng, Q. Wang, R. Juan, A DFT study of hydrogen adsorption on Ca decorated hexagonal B36 with van der Waals corrections, Physica E: Low-dimensional Systems and Nanostructures 114 (2019) 113576.
  • [12] R. Suresh, S. Vijayakumar, Adsorption of greenhouse gases on the surface of covalent organic framework of porphyrin – An ab initio study, Physica E: Low-dimensional Systems and Nanostructures 126 (2021).
  • [13] Q. Sun, P. Jena, Q. Wang, M. Marquez, First-Principles Study of Hydrogen Storage on Li12C60, Journal of American Chemical Society 128 (2006) 9741-5.
  • [14] K. Gopalsamy, V. Subramanian, Role of Alkaline Earth Metal Cations in Improving the Hydrogen-Storage Capacity of Polyhydroxy Adamantane: A DFT Study, Journal of Physical Chemistry C 120 (2016) 19932-41.
  • [15] M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, Z. Zhang, Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage, Physical Review Letters 100 (2008) 206806.
  • [16] K.I.M. Rojas, A.R.C. Villagracia, J.L. Moreno, M. David, N.B. Arboleda, Ca and K decorated germanene as hydrogen storage: An ab initio study, International Journal of Hydrogen Energy 43 (2018) 4393-400.
  • [17] M. Samolia, T.J.D. Kumar, Hydrogen Sorption Efficiency of Titanium-Functionalized Mg–BN Framework, Journal of Physical Chemistry C 118 (2014) 10859-66.
  • [18] R.Y. Sathe, S. Kumar, T.J.D. Kumar, First-principles study of hydrogen storage in metal functionalized [4,4]paracyclophane, International Journal of Hydrogen Energy 43 (2018) 5680-9.
  • [19] K. Gopalsamy, V. Subramanian, Hydrogen storage capacity of alkali and alkaline earth metal ions doped carbon based materials: A DFT study, International Journal of Hydrogen Energy 39 (2014) 2549-59.
  • [20] G. Zhu, Q. Sun, Y. Kawazoe, P. Jena, Porphyrin-based porous sheet: Optoelectronic properties and hydrogen storage, International Journal of Hydrogen Energy 40 (2015) 3689-96.
  • [21] K. Srinivasu, S.K. Ghosh, Transition Metal Decorated Porphyrin-like Porous Fullerene: Promising Materials for Molecular Hydrogen Adsorption, Journal of Physical Chemistry C 116 (2012) 25184-9.
  • [22] S. Ghosh, J.K. Singh, Hydrogen adsorption in pyridine bridged porphyrin-covalent organic framework, International Journal of Hydrogen Energy 44 (2019) 1782-96.
  • [23] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140 (1965) A1133-A8.
  • [24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ort, D.J. Fox, Gaussian09, Revision D.01 (2009).
  • [25] J-D Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals, Journal Chemical Physics 128 2008 084106.
  • [26] B. Mounssef Jr, S.F.A. Morais, A.P.L. Batista, L.W. Lima, A.A.C. Braga, DFT study of H2 adsorption at Cu−SSZ−13 zeolite: a cluster approach, Physical Chemistry Chemical Physics 23 (2021) 9980-9990.
  • [27] N. Kobko, J.J. Dannenberg, Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states, Journal of Physical Chemistry A 105 (2001) 1944-1950.
  • [28] E. Vessally, I. Alkorta, S. Ahmadi, R. Mohammadi, A. Hosseinian, A DFT study on nanocones, nanotubes (4,0), nanosheets and fullerene C60 as anodes in Mg-ion batteries, RSC Advances 9 (2019) 853-862.
  • [29] J. Bhuyan, K. Borah, Magnesium porphyrins with relevance to chlorophylls, Dalton Transactions 46 (2017) 6497-6509.
  • [30] N. Amiri, M. Hajji, T. Roisnel, G. Simonneaux, H. Nasri, Synthesis, molecular structure, photophysical properties and spectroscopic characterization of new 1D-magnesium(II) porphyrin-based coordination polymer, Research on Chemical Intermediates 44 (2018) 5583-5595.
  • [31] R.H. Perry, D.W. Green, In: Perry’s chemical engineers handbook, seventh ed., McGraw-Hill International Editors, Sidney (1997).
  • [32] M.F. Fellah, Pt doped (8,0) single wall carbon nanotube as hydrogen sensor: A density functional theory study, International Journal of Hydrogen Energy 44 (2019) 27010-21.
  • [33] A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors and Actuators B Chemical 161 (2012) 1025-9.
  • [34] N.L. Hadipour, A.A. Peyghan, H. Soleymanabadi, Theoretical Study on the Al-Doped ZnO Nanoclusters for CO Chemical Sensors, Journal of Physical Chemistry C 119 (2015) 6398-404.
  • [35] A.A Peyghan, N.L. Hadipour, Z. Bagheri, Effects of Al Doping and Double-Antisite Defect on the Adsorption of HCN on a BC2N Nanotube: Density Functional Theory Studies, Journal of Physical Chemistry C 117 (2013) 2427-32.
  • [36] M. Eslami, V. Vahabi, A.A. Peyghan, Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: A computational study, Physica E: Low-dimensional Systems and Nanostructures 76 (2016) 6-11.
  • [37] P. Sjoberg, P. Politzer, Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes, Journal of Physical Chemistry 94 (1990) 3959-61.
  • [38] G. Yu, L. Lyu, F. Zhang, D. Yan, W. Cao, C. Hu, Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution, RSC Advances 8 (2018) 3312-20.
  • [39] E. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, Revealing Noncovalent Interactions, Journal of American Chemical Sociesty 132 (2010) 6498-6506.
Year 2022, Volume: 6 Issue: 2, 38 - 48, 15.12.2022
https://doi.org/10.33435/tcandtc.1080492

Abstract

References

  • [1] E. Baydir, Ö. Aras, Methanol steam reforming in a microchannel reactor coated with spray pyrolysis method for durable Cu/ZnO nanocatalyst, Journal of Analytical Applied Pyrolysis 158 (2021) 105278.
  • [2] E. Boateng, A., Chen, Recent advances in nanomaterial-based solid-state hydrogen storage, Materials Today Advances 6 (2020) 100022.
  • [3] Y. Pang, W. Li, J. Zhang, Gas adsorption in Mg-porphyrin-based porous organic frameworks: A computational simulation by first-principles derived force field, Journal Computational Chemistry 38 (2017) 2100-7.
  • [4] S.P. Shet, S.S. Priya, K. Sudhakar, M. Tahir, A review on current trends in potential use of metal-organic framework for hydrogen storage, International Journal of Hydrogen Energy 46 (2021) 11782-803.
  • [5] J. Xu, X. Liu, Z. Zhou, M. Xu, Photocatalytic CO2 reduction catalyzed by metalloporphyrin: Understanding of cobalt and nickel sites in activity and adsorption, Applied Surface Science 513 (2020) 145801.
  • [6] A. Saeidipoor, S. Arshadi, M.R. Benam, The Titano-Porphyrin doped pillared graphene as a novel “turn-off” fluorescent sensor for CO gas: Theoretical study, Physica E: Low-dimensional Systems and Nanostructures 127 (2021) 114554.
  • [7] P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang et al., Metal-porphyrin: a potential catalyst for direct decomposition of N(2)O by theoretical reaction mechanism investigation, Environmental Science Technology 48 (2014) 7101-10.
  • [8] J. Yu, S. Zhu, P. Chen, G-T. Zhu, X. Jiang, S. Di, Adsorption behavior and mechanism of Pb(II) on a novel and effective porphyrin-based magnetic nanocomposite, Applied Surface Science 484 (2019) 124-34.
  • [9] A.E. Kuznetsov, Hexabenzocoronene functionalized with porphyrin and P-core-modified porphyrin: A comparative computational study, Computational Theoretical Chemistry 1188 (2020) 112973.
  • [10] X. Du, H. Zhang, Y. Lu, A-H. Wang, P. Shi, Z-S. Li, Fluorination reaction on an inactive sp3 Csingle bondH bond mediated by manganese porphyrin catalysts: A theoretical study, Computational Theoretical Chemistry 1115 (2017) 330-334.
  • [11] P. Liu, F. Liu, Y. Peng, Q. Wang, R. Juan, A DFT study of hydrogen adsorption on Ca decorated hexagonal B36 with van der Waals corrections, Physica E: Low-dimensional Systems and Nanostructures 114 (2019) 113576.
  • [12] R. Suresh, S. Vijayakumar, Adsorption of greenhouse gases on the surface of covalent organic framework of porphyrin – An ab initio study, Physica E: Low-dimensional Systems and Nanostructures 126 (2021).
  • [13] Q. Sun, P. Jena, Q. Wang, M. Marquez, First-Principles Study of Hydrogen Storage on Li12C60, Journal of American Chemical Society 128 (2006) 9741-5.
  • [14] K. Gopalsamy, V. Subramanian, Role of Alkaline Earth Metal Cations in Improving the Hydrogen-Storage Capacity of Polyhydroxy Adamantane: A DFT Study, Journal of Physical Chemistry C 120 (2016) 19932-41.
  • [15] M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, Z. Zhang, Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage, Physical Review Letters 100 (2008) 206806.
  • [16] K.I.M. Rojas, A.R.C. Villagracia, J.L. Moreno, M. David, N.B. Arboleda, Ca and K decorated germanene as hydrogen storage: An ab initio study, International Journal of Hydrogen Energy 43 (2018) 4393-400.
  • [17] M. Samolia, T.J.D. Kumar, Hydrogen Sorption Efficiency of Titanium-Functionalized Mg–BN Framework, Journal of Physical Chemistry C 118 (2014) 10859-66.
  • [18] R.Y. Sathe, S. Kumar, T.J.D. Kumar, First-principles study of hydrogen storage in metal functionalized [4,4]paracyclophane, International Journal of Hydrogen Energy 43 (2018) 5680-9.
  • [19] K. Gopalsamy, V. Subramanian, Hydrogen storage capacity of alkali and alkaline earth metal ions doped carbon based materials: A DFT study, International Journal of Hydrogen Energy 39 (2014) 2549-59.
  • [20] G. Zhu, Q. Sun, Y. Kawazoe, P. Jena, Porphyrin-based porous sheet: Optoelectronic properties and hydrogen storage, International Journal of Hydrogen Energy 40 (2015) 3689-96.
  • [21] K. Srinivasu, S.K. Ghosh, Transition Metal Decorated Porphyrin-like Porous Fullerene: Promising Materials for Molecular Hydrogen Adsorption, Journal of Physical Chemistry C 116 (2012) 25184-9.
  • [22] S. Ghosh, J.K. Singh, Hydrogen adsorption in pyridine bridged porphyrin-covalent organic framework, International Journal of Hydrogen Energy 44 (2019) 1782-96.
  • [23] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140 (1965) A1133-A8.
  • [24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ort, D.J. Fox, Gaussian09, Revision D.01 (2009).
  • [25] J-D Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals, Journal Chemical Physics 128 2008 084106.
  • [26] B. Mounssef Jr, S.F.A. Morais, A.P.L. Batista, L.W. Lima, A.A.C. Braga, DFT study of H2 adsorption at Cu−SSZ−13 zeolite: a cluster approach, Physical Chemistry Chemical Physics 23 (2021) 9980-9990.
  • [27] N. Kobko, J.J. Dannenberg, Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states, Journal of Physical Chemistry A 105 (2001) 1944-1950.
  • [28] E. Vessally, I. Alkorta, S. Ahmadi, R. Mohammadi, A. Hosseinian, A DFT study on nanocones, nanotubes (4,0), nanosheets and fullerene C60 as anodes in Mg-ion batteries, RSC Advances 9 (2019) 853-862.
  • [29] J. Bhuyan, K. Borah, Magnesium porphyrins with relevance to chlorophylls, Dalton Transactions 46 (2017) 6497-6509.
  • [30] N. Amiri, M. Hajji, T. Roisnel, G. Simonneaux, H. Nasri, Synthesis, molecular structure, photophysical properties and spectroscopic characterization of new 1D-magnesium(II) porphyrin-based coordination polymer, Research on Chemical Intermediates 44 (2018) 5583-5595.
  • [31] R.H. Perry, D.W. Green, In: Perry’s chemical engineers handbook, seventh ed., McGraw-Hill International Editors, Sidney (1997).
  • [32] M.F. Fellah, Pt doped (8,0) single wall carbon nanotube as hydrogen sensor: A density functional theory study, International Journal of Hydrogen Energy 44 (2019) 27010-21.
  • [33] A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors and Actuators B Chemical 161 (2012) 1025-9.
  • [34] N.L. Hadipour, A.A. Peyghan, H. Soleymanabadi, Theoretical Study on the Al-Doped ZnO Nanoclusters for CO Chemical Sensors, Journal of Physical Chemistry C 119 (2015) 6398-404.
  • [35] A.A Peyghan, N.L. Hadipour, Z. Bagheri, Effects of Al Doping and Double-Antisite Defect on the Adsorption of HCN on a BC2N Nanotube: Density Functional Theory Studies, Journal of Physical Chemistry C 117 (2013) 2427-32.
  • [36] M. Eslami, V. Vahabi, A.A. Peyghan, Sensing properties of BN nanotube toward carcinogenic 4-chloroaniline: A computational study, Physica E: Low-dimensional Systems and Nanostructures 76 (2016) 6-11.
  • [37] P. Sjoberg, P. Politzer, Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes, Journal of Physical Chemistry 94 (1990) 3959-61.
  • [38] G. Yu, L. Lyu, F. Zhang, D. Yan, W. Cao, C. Hu, Theoretical and experimental evidence for rGO-4-PP Nc as a metal-free Fenton-like catalyst by tuning the electron distribution, RSC Advances 8 (2018) 3312-20.
  • [39] E. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, Revealing Noncovalent Interactions, Journal of American Chemical Sociesty 132 (2010) 6498-6506.
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Ahmet Köse 0000-0001-6611-4930

Numan Yüksel 0000-0003-1268-5775

Mehmet Ferdi Fellah 0000-0001-6314-3365

Early Pub Date March 18, 2022
Publication Date December 15, 2022
Submission Date February 28, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Köse, A., Yüksel, N., & Fellah, M. F. (2022). Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Computational and Theoretical Chemistry, 6(2), 38-48. https://doi.org/10.33435/tcandtc.1080492
AMA Köse A, Yüksel N, Fellah MF. Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Comp Theo Chem (TC&TC). December 2022;6(2):38-48. doi:10.33435/tcandtc.1080492
Chicago Köse, Ahmet, Numan Yüksel, and Mehmet Ferdi Fellah. “Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage”. Turkish Computational and Theoretical Chemistry 6, no. 2 (December 2022): 38-48. https://doi.org/10.33435/tcandtc.1080492.
EndNote Köse A, Yüksel N, Fellah MF (December 1, 2022) Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Computational and Theoretical Chemistry 6 2 38–48.
IEEE A. Köse, N. Yüksel, and M. F. Fellah, “Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage”, Turkish Comp Theo Chem (TC&TC), vol. 6, no. 2, pp. 38–48, 2022, doi: 10.33435/tcandtc.1080492.
ISNAD Köse, Ahmet et al. “Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage”. Turkish Computational and Theoretical Chemistry 6/2 (December 2022), 38-48. https://doi.org/10.33435/tcandtc.1080492.
JAMA Köse A, Yüksel N, Fellah MF. Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Comp Theo Chem (TC&TC). 2022;6:38–48.
MLA Köse, Ahmet et al. “Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage”. Turkish Computational and Theoretical Chemistry, vol. 6, no. 2, 2022, pp. 38-48, doi:10.33435/tcandtc.1080492.
Vancouver Köse A, Yüksel N, Fellah MF. Metal-Porphyrin Complexes: A DFT Study of Hydrogen Adsorption and Storage. Turkish Comp Theo Chem (TC&TC). 2022;6(2):38-4.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)