Research Article
BibTex RIS Cite

Finike ve Kumluca ovalarında yaşanan su hortumlarının oluşum süreçleri ve etkileri

Year 2021, Issue: 77, 19 - 36, 30.06.2021
https://doi.org/10.17211/tcd.827607

Abstract

İnsanoğlunun artan nüfusuyla birlikte genişleyen yerleşim ve yaşam alanları, artan görüntüleme sistemleri ve ağ paylaşımları hortumlara ilişkin daha fazla haberin gündem olmasını sağlamaktadır. Oluşum mekanizmaları kasırgalara benzetilmekle beraber henüz tam olarak açıklanamamış olan hortumların dar alanlarda, kısa mesafeli koridorlar içerisinde oluşturdukları yıkım, tahribat güçleri ve verdikleri zararlar onların haber konusu olmalarında etkili hususlardır. Kara ve su hortumlarının oluşum özelliklerinin ve dağılışlarının ele alındığı bu çalışmada, özellikle Antalya İli Finike ve Kumluca ilçe sınırları içerisinde hortum olaylarının gerçekleştiği dört farklı gün seçilerek, hortum oluşum süreçleri sinoptik ve yerel meteorolojik verilerle açıklanmaya çalışılmıştır. Kumluca ve Finike ilçe tarım müdürlüklerinin hasar tespit çalışmaları kapsamında düzenledikleri, 2010-2020 yılları arasında yaşanan afetlere ilişkin verilerden de yararlanılmıştır. Hortumların oluşturduğu hasarlara örnek oluşturması bakımından 24.01.2019 tarihinde yaşanan hortumun ve etkileri incelenmiştir. Yapılan araştırma ile; Finike ve Kumluca’da yaşanan hortum hadislerinin çoğunlukla su hortumları olduğu, hortumların kış mevsiminde özellikle ocak ayında daha fazla yaşandığı, su hortumlarının oluşumunda, yöreye yaklaşan siklonik sistemlerin ve frontal özellikleri ile kara ve deniz dağılışı ile yüksek reliefin etkili olduğu, buna karşılık deniz suyu sıcaklığının etkisinin fazla olmadığı elde edilen sonuçlardır. Hortumların, farklı günlerde fakat birbirine benzeyen meteorolojik koşullarda oluşmaları, erken uyarı sistemlerinin geliştirilmesini mümkün kılmaktadır. Erken uyarı sistemlerinin, hortumların oluşturacağı can kayıplarının önlenmesinde etkili olacağı, ulaşılan sonuçlar arasındadır.

References

  • Anthes, R., Panofsky, H., Cahir, J., & Rango, A. (1978). The athmosphere (Second Edition). Columbus, Ohio, USA: Charles E. Merrill Publishing Company; A Bell & Howell Company.
  • Antonescu, B., Schultz, D.M., Holzer, A., & Groenemeijer, P. (2017). Tornadoes in Europe, an underestimated threat. Bulletin of the American Meteorological Society, 98 (4), 713-728. https://doi.org/10.1175/BAMS-D-16-0171.1
  • Bozkurt, D. (2011). Türkiye’de hortumlar artıyor mu? Bilim ve Teknik, (526), 68–71. https://services.tubitak.gov.tr/edergi/yazi.pdf?dergiKodu=4&cilt=44&sayi=526&sayfa=6&yil=2011&ay=9&yaziid=32237
  • Diaz, J., & Joseph, M. B. (2019). Predicting property damage from tornadoes with zero-inflated neural networks. Weather and Climate Extremes, 25(September), 100216. https://doi.org/10.1016/j.wace.2019.100216
  • Doswell III, C.A., (Ed.) (2001). Severe convective storms. – American Meteorological Society, Meteorologıcal Monographs. Volume 28. ISBN-13: 978-1878220417
  • Dotzek, N., Emeis, S., Lefebvre, C., & Gerpott, J. (2010). Water- spouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorologische Zeits- chrift, 19, 115–129.
  • Dotzek, N., M.V. Kurgansky, J. Grıeser, B. Feuersteın., & P. N´evır. (2005). Observational evidence for exponential tornado intensity distributions over specific kinetic energy. – Geophys. Res. Lett. 32, L24813, https://doi.org/10.1029/2005GL024583
  • Emanuel, K. (2005). Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci, 2, 217–220. https://doi.org/10.5194/adgeo-2-217-2005
  • Erinç, S. (1996) Klimatoloji ve metodları. Genişletilmiş 4. Baskı, Alfa Basım Yayın ve Dağıtım.
  • Fricker, T., & Elsner, J. B. (2019). Unusually devastating tornadoes in the United States: 1995-2016. Annals Of The Amerıcan Assocıatıon Of Geographers, 0(0), 1–15. https://doi.org/10.1080/24694452.2019.1638753
  • Fujita, T. T. (1971). Proposed characterization of tornadoes and hurricanes by area and intensity. Universityof Chicago SMRP Research Paper 91, 42 pp.
  • Gayà, M. (2011). Tornadoes and severe storms in Spain. Atmospheric Research, 100(4), 334–343. https://doi.org/10.1016/j.atmosres.2010.10.019
  • Gaume, E., Borga, M., LIassat, M.C., Maouche, S., & Diakakis, M.L.y. M. (2016). Mediterranean extreme floods and flash floods. The Mediterranean Region under Climate Change. A Scientific Update, IRD Editions, pp.133-144, 2016, Coll. Synthèses, 978-2-7099-2219-7. DOI : 10.4000/books.irdeditions.22908, https://hal.archives-ouvertes.fr/hal-01465740v2
  • Golden, J. H. (1974). The life cycle of Florida keys’ waterspouts. I. Journal Of Applied Meteorology, 13, 676–692.
  • González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J., Murakami, H., Gaertner, M. A., & Vecchi, G. A. (2019). Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophysical Research Letters, 46(3), 1754–1764. https://doi.org/10.1029/2018GL081253
  • Gordon, A.H. (1951). Waterspouts. Weather 6, 364–371.
  • Houze, R.A., Jr. 1993. Cloud dynamics. San Diego, CA: Academic Press. 573 p
  • Jones, Robert D., Trapp, R. J., & Bluestein, H. B., (2001). Tornadoes and Tornadic Storms. Meteorological Monographs, 50 (September 2014), 167–222. https://doi.org/10.1175/0065-9401-28.50.167
  • Kahraman, A., & P. M. Markowski., (2014). Tornado climatology of Turkey. Mon. Wea. Rev., 142, 2345–2352, https://doi.org/10.1175/MWR-D-13-00364.1
  • Keul, A.G., M.V. Sıoutas & W. Szılagyı., (2009). Prognosis of Central-Eastern Mediterranean Waterspouts. Atmos. Res. 93, 426–436, https://doi.org/10.1016/j.atmosres.2008.10.028
  • Kuzmić, J., Renko, T. & Mahović, N, S., (2013). Synoptic and mesoscale analysis of waterspouts in the Adriatic (2001-2011 preliminary climatology). Challenges in meteorology 3: Extreme weather and impact on society 21-22 November 2013, Zagreb.
  • Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; & Price, C., (2013). Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modelling and satellite approach. Geophys. Res. Lett., 40, 2400–2405.
  • Nalivkin, D., (1969). "Diffuse" Tornadoes and Their Recording. Meteor. Gidro. No.1, 93-95.
  • Niino, H., Fujitani, T. Yamaguchi, Y. & Murota, T., (1991), On the characteristics of the Mobara tornado, December 11, 1990 (in Japanese). J. Wind. Eng., 48, 15–25.
  • Niino. H, Takayabu, I., Suzuki, O., & Nirasawa, H., (1993 a): Mesoscale analysis of the tornadoes in Chiba Prefecture (in Japanese). Japan Meteor. Agency Tech. Rep. 113, 76–91.
  • Niino, H, Suzuki, O., Nirasawa, H., Fujitani, T., Ohno, H., Takayabu, I., & Kinoshita, N. (1993 b). Tornadoes in Chiba Prefecture on 11 December 1990. Mon. Wea. Rev., 121, 3001–3018.
  • Niino. H, Fujitani, T., & Watanabe, N. (1994). Characteristics of tornadoes in Japan in recent 33 years (in Japanese). Preprints, Spring Meeting of Meteor. Soc. of Japan, Tokyo, Japan, Meteor. Soc. Japan, 240.
  • Niino.H. Fujitani, T., (2007). A Statistical Study of Tornadoes and Waterspouts in Japan from 1961 to 1993. American Meteorological Society.Sayı., 10,1730-1752.
  • Öner, E., & Vardar, S. (2018). Finike Ovasının Holosen Jeomorfolojisi ve Limyra’nın Jeoarkeolojisi. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi (ASEAD) Eurasian Journal of Researches in Social and Economics (EJRSE), 5(5), 1–23. https://dergipark.org.tr/tr/download/article-file/591507
  • Pytharoulis, I. (2018). Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res., 208, 167–179. https://doi.org/10.1016/j.atmosres.2017.08.009
  • Sioutas, M.V., & Flocas, H.A., (2003). Hailstorms in northern Greece: synoptic and thermodynamic environment. Theor. Appl. Climatol. 75, 189–202.
  • Sioutas, M.V., Renko, T., & Keul, A., (2014). Waterspout climatology over the Central-Eastern Mediterranean. COMECAP 2014 e-book of proceedings ISBN: 978-960-524-430-9 3, 154-158.
  • Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., & Ngan, F., (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96(12), 2059-2077. http://dx.doi.org/10.1175/BAMS-D-14-00110.1
  • Strahler, A. N., (1963). The earth sciences. Harper & Row, Publishers, Incorporated.
  • Suguwara, Y., & F. Kobayashı, (2008). Structure of a Waterspout Occurred over Tokyo Bay on May 31, 2007. – Sci. Online Lett. Atmos. 4, 1–4. https://doi.org/10.2151/sola.2008-001
  • Şen, Ö, M., & Göktürk, O. M. (2006). Antalya’da Meydana Gelen Şiddetli Yağış Olaylarına Topoğrafyanın Etkisinin Bir Bölgesel İklim Modeli ile Araştırılması. Proje no: 104Y182.
  • Tarbuck, E.J., & Lutgens, F.K., (2015). Earth Science, by Pearson Education, Illustrated by Dennis Tasa. – 14th ed. Upper Saddle River, New Jersey, USA.
  • Tous, M. & Romero, R., (2013). Meteorological environments associated with medicane development. Int. J. Climatol., 33, 1–14.
  • Türkeş, M. (2015). Hortumlar ve Oluşum Düzenekleri. Bilim ve Gerçek, 132 (Şubat), 80–83. https://bilimvegelecek.com.tr/index.php/2015/02/02/hortumlar-ve-olusum-duzenekleri/
  • Türkeş, M. (2016). Genel klimatoloji, atmosfer, hava ve iklimin temelleri. Kriter Yayınevi.
  • Wakimoto RM, & Lew JK., (1993). Observations of a Florida waterspout during Cape. Weather Forecast. 8(4): 412–423.
  • Wegener, A., (1917). Wind- und Wasserhosen in Europa (Tornadosin Europe). – Verlag Friedrich Vieweg und Sohn, Braunschweig, 301., in German, available at essl.org.
  • Yaman Kocadağlı, A. (2012). Kalkan-Kumluca Arasında Kıyı Alanları Kullanımı ve Sorunları (Yayın no 314892) [Doktora tezi, İstanbul Üniversitesi] YüksekÖğretim Kurulu Başkanlığı Tez Merkezi.
  • Yavuz, V., Çavuş, P.C., & Özen, C. (2015). Türkiye'de Hortum Vakalarının Zamansal Ve Mekansal Analizi, VII. Atmospheric Science Symposium, İstanbul, Turkey; 28-30/04/2015.
  • Yiğitbaşıoğlu, H. (2000). Finike ve Yakın Çevresinin İklim Özellikleri. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 1-2, 108-135.
  • NTV (2012, Nisan 9). NTV Son Dakika: https://www.ntv.com.tr/turkiye/elazigda-hortum-6-olu,uSK4FeCJGEWCaMMit-YwwQ
  • Hürriyet (2004, Haziran 19), https://www.hurriyet.com.tr/gundem/ankarada-hortum-3-olu-14-yarali-234940
  • Hürriyet (2011, Ekim 11). https://www.hurriyet.com.tr/gundem/bir-kisinin-daha-cesedine-ulasildi-18952568
  • Beyazgazete (2013, Mayıs 12). Hortum Kızıltepe'de can aldı. http://beyazgazete.com/video/anahaber/tv8-74/2013/05/12/hortum-kiziltepe-de-can-aldi-409718.html
  • Meteociel.fr (‎‎2020, Kasım 8). Modèles - Archives des réanalyses du NCEP: https://www.meteociel.fr/modeles/archives/archives.php
  • Meteologix (‎2020, ‎Ağustos 20). Tr. ECMWF ERA5 Reanalysis: https://meteologix.com/tr/reanalysis/ecmwf-era5/turkey/wind-mean-direction/20171113-1800z.html

The formation process and effects of waterspouts in the plains of Finike and Kumluca

Year 2021, Issue: 77, 19 - 36, 30.06.2021
https://doi.org/10.17211/tcd.827607

Abstract

With the increasing population of humankind, expanding settlements and living areas, increasing imaging systems and network sharing make more news about tornadoes to be on the agenda. Although the mechanisms of their formation are likened to hurricanes, tornadoes mechanisms have not yet been fully explained. Tornadoes make destruction, destructive forces, damages in narrow and short-distance corridors, and these are effective factors for them to be in the news. In this study, in which the formation characteristics and distribution of land and waterspouts are discussed, four different days in which tornado events took place within the borders of Antalya Province Finike and Kumluca were selected, and the process of tornadoes formation was tried to be explained with synoptic and local meteorological data. Data on disasters between 2010 and 2020, organized by Kumluca and Finike district agriculture directorates within the scope of damage assessment studies, were also used. To set an example for the damages caused by the waterspouts, the waterspout was experienced on 24.01.2019 and its effects were examined. With the research done; The tornadoes that occurred in Finike and Kumluca are mostly waterspouts, the tornadoes are more common in winter, especially in January, the formation of the waterspouts, the cyclonic systems approaching the region and the frontal features, land and sea distribution and high relief are effective, whereas the seawater temperature These are the results obtained with not much affect. The formation of tornadoes on different days but in similar meteorological conditions makes it possible to develop early warning systems. It is among the results that early warning systems will be effective for preventing the loss of life caused by tornadoes.

References

  • Anthes, R., Panofsky, H., Cahir, J., & Rango, A. (1978). The athmosphere (Second Edition). Columbus, Ohio, USA: Charles E. Merrill Publishing Company; A Bell & Howell Company.
  • Antonescu, B., Schultz, D.M., Holzer, A., & Groenemeijer, P. (2017). Tornadoes in Europe, an underestimated threat. Bulletin of the American Meteorological Society, 98 (4), 713-728. https://doi.org/10.1175/BAMS-D-16-0171.1
  • Bozkurt, D. (2011). Türkiye’de hortumlar artıyor mu? Bilim ve Teknik, (526), 68–71. https://services.tubitak.gov.tr/edergi/yazi.pdf?dergiKodu=4&cilt=44&sayi=526&sayfa=6&yil=2011&ay=9&yaziid=32237
  • Diaz, J., & Joseph, M. B. (2019). Predicting property damage from tornadoes with zero-inflated neural networks. Weather and Climate Extremes, 25(September), 100216. https://doi.org/10.1016/j.wace.2019.100216
  • Doswell III, C.A., (Ed.) (2001). Severe convective storms. – American Meteorological Society, Meteorologıcal Monographs. Volume 28. ISBN-13: 978-1878220417
  • Dotzek, N., Emeis, S., Lefebvre, C., & Gerpott, J. (2010). Water- spouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorologische Zeits- chrift, 19, 115–129.
  • Dotzek, N., M.V. Kurgansky, J. Grıeser, B. Feuersteın., & P. N´evır. (2005). Observational evidence for exponential tornado intensity distributions over specific kinetic energy. – Geophys. Res. Lett. 32, L24813, https://doi.org/10.1029/2005GL024583
  • Emanuel, K. (2005). Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci, 2, 217–220. https://doi.org/10.5194/adgeo-2-217-2005
  • Erinç, S. (1996) Klimatoloji ve metodları. Genişletilmiş 4. Baskı, Alfa Basım Yayın ve Dağıtım.
  • Fricker, T., & Elsner, J. B. (2019). Unusually devastating tornadoes in the United States: 1995-2016. Annals Of The Amerıcan Assocıatıon Of Geographers, 0(0), 1–15. https://doi.org/10.1080/24694452.2019.1638753
  • Fujita, T. T. (1971). Proposed characterization of tornadoes and hurricanes by area and intensity. Universityof Chicago SMRP Research Paper 91, 42 pp.
  • Gayà, M. (2011). Tornadoes and severe storms in Spain. Atmospheric Research, 100(4), 334–343. https://doi.org/10.1016/j.atmosres.2010.10.019
  • Gaume, E., Borga, M., LIassat, M.C., Maouche, S., & Diakakis, M.L.y. M. (2016). Mediterranean extreme floods and flash floods. The Mediterranean Region under Climate Change. A Scientific Update, IRD Editions, pp.133-144, 2016, Coll. Synthèses, 978-2-7099-2219-7. DOI : 10.4000/books.irdeditions.22908, https://hal.archives-ouvertes.fr/hal-01465740v2
  • Golden, J. H. (1974). The life cycle of Florida keys’ waterspouts. I. Journal Of Applied Meteorology, 13, 676–692.
  • González-Alemán, J. J., Pascale, S., Gutierrez-Fernandez, J., Murakami, H., Gaertner, M. A., & Vecchi, G. A. (2019). Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophysical Research Letters, 46(3), 1754–1764. https://doi.org/10.1029/2018GL081253
  • Gordon, A.H. (1951). Waterspouts. Weather 6, 364–371.
  • Houze, R.A., Jr. 1993. Cloud dynamics. San Diego, CA: Academic Press. 573 p
  • Jones, Robert D., Trapp, R. J., & Bluestein, H. B., (2001). Tornadoes and Tornadic Storms. Meteorological Monographs, 50 (September 2014), 167–222. https://doi.org/10.1175/0065-9401-28.50.167
  • Kahraman, A., & P. M. Markowski., (2014). Tornado climatology of Turkey. Mon. Wea. Rev., 142, 2345–2352, https://doi.org/10.1175/MWR-D-13-00364.1
  • Keul, A.G., M.V. Sıoutas & W. Szılagyı., (2009). Prognosis of Central-Eastern Mediterranean Waterspouts. Atmos. Res. 93, 426–436, https://doi.org/10.1016/j.atmosres.2008.10.028
  • Kuzmić, J., Renko, T. & Mahović, N, S., (2013). Synoptic and mesoscale analysis of waterspouts in the Adriatic (2001-2011 preliminary climatology). Challenges in meteorology 3: Extreme weather and impact on society 21-22 November 2013, Zagreb.
  • Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; & Price, C., (2013). Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modelling and satellite approach. Geophys. Res. Lett., 40, 2400–2405.
  • Nalivkin, D., (1969). "Diffuse" Tornadoes and Their Recording. Meteor. Gidro. No.1, 93-95.
  • Niino, H., Fujitani, T. Yamaguchi, Y. & Murota, T., (1991), On the characteristics of the Mobara tornado, December 11, 1990 (in Japanese). J. Wind. Eng., 48, 15–25.
  • Niino. H, Takayabu, I., Suzuki, O., & Nirasawa, H., (1993 a): Mesoscale analysis of the tornadoes in Chiba Prefecture (in Japanese). Japan Meteor. Agency Tech. Rep. 113, 76–91.
  • Niino, H, Suzuki, O., Nirasawa, H., Fujitani, T., Ohno, H., Takayabu, I., & Kinoshita, N. (1993 b). Tornadoes in Chiba Prefecture on 11 December 1990. Mon. Wea. Rev., 121, 3001–3018.
  • Niino. H, Fujitani, T., & Watanabe, N. (1994). Characteristics of tornadoes in Japan in recent 33 years (in Japanese). Preprints, Spring Meeting of Meteor. Soc. of Japan, Tokyo, Japan, Meteor. Soc. Japan, 240.
  • Niino.H. Fujitani, T., (2007). A Statistical Study of Tornadoes and Waterspouts in Japan from 1961 to 1993. American Meteorological Society.Sayı., 10,1730-1752.
  • Öner, E., & Vardar, S. (2018). Finike Ovasının Holosen Jeomorfolojisi ve Limyra’nın Jeoarkeolojisi. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi (ASEAD) Eurasian Journal of Researches in Social and Economics (EJRSE), 5(5), 1–23. https://dergipark.org.tr/tr/download/article-file/591507
  • Pytharoulis, I. (2018). Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res., 208, 167–179. https://doi.org/10.1016/j.atmosres.2017.08.009
  • Sioutas, M.V., & Flocas, H.A., (2003). Hailstorms in northern Greece: synoptic and thermodynamic environment. Theor. Appl. Climatol. 75, 189–202.
  • Sioutas, M.V., Renko, T., & Keul, A., (2014). Waterspout climatology over the Central-Eastern Mediterranean. COMECAP 2014 e-book of proceedings ISBN: 978-960-524-430-9 3, 154-158.
  • Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., & Ngan, F., (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96(12), 2059-2077. http://dx.doi.org/10.1175/BAMS-D-14-00110.1
  • Strahler, A. N., (1963). The earth sciences. Harper & Row, Publishers, Incorporated.
  • Suguwara, Y., & F. Kobayashı, (2008). Structure of a Waterspout Occurred over Tokyo Bay on May 31, 2007. – Sci. Online Lett. Atmos. 4, 1–4. https://doi.org/10.2151/sola.2008-001
  • Şen, Ö, M., & Göktürk, O. M. (2006). Antalya’da Meydana Gelen Şiddetli Yağış Olaylarına Topoğrafyanın Etkisinin Bir Bölgesel İklim Modeli ile Araştırılması. Proje no: 104Y182.
  • Tarbuck, E.J., & Lutgens, F.K., (2015). Earth Science, by Pearson Education, Illustrated by Dennis Tasa. – 14th ed. Upper Saddle River, New Jersey, USA.
  • Tous, M. & Romero, R., (2013). Meteorological environments associated with medicane development. Int. J. Climatol., 33, 1–14.
  • Türkeş, M. (2015). Hortumlar ve Oluşum Düzenekleri. Bilim ve Gerçek, 132 (Şubat), 80–83. https://bilimvegelecek.com.tr/index.php/2015/02/02/hortumlar-ve-olusum-duzenekleri/
  • Türkeş, M. (2016). Genel klimatoloji, atmosfer, hava ve iklimin temelleri. Kriter Yayınevi.
  • Wakimoto RM, & Lew JK., (1993). Observations of a Florida waterspout during Cape. Weather Forecast. 8(4): 412–423.
  • Wegener, A., (1917). Wind- und Wasserhosen in Europa (Tornadosin Europe). – Verlag Friedrich Vieweg und Sohn, Braunschweig, 301., in German, available at essl.org.
  • Yaman Kocadağlı, A. (2012). Kalkan-Kumluca Arasında Kıyı Alanları Kullanımı ve Sorunları (Yayın no 314892) [Doktora tezi, İstanbul Üniversitesi] YüksekÖğretim Kurulu Başkanlığı Tez Merkezi.
  • Yavuz, V., Çavuş, P.C., & Özen, C. (2015). Türkiye'de Hortum Vakalarının Zamansal Ve Mekansal Analizi, VII. Atmospheric Science Symposium, İstanbul, Turkey; 28-30/04/2015.
  • Yiğitbaşıoğlu, H. (2000). Finike ve Yakın Çevresinin İklim Özellikleri. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 1-2, 108-135.
  • NTV (2012, Nisan 9). NTV Son Dakika: https://www.ntv.com.tr/turkiye/elazigda-hortum-6-olu,uSK4FeCJGEWCaMMit-YwwQ
  • Hürriyet (2004, Haziran 19), https://www.hurriyet.com.tr/gundem/ankarada-hortum-3-olu-14-yarali-234940
  • Hürriyet (2011, Ekim 11). https://www.hurriyet.com.tr/gundem/bir-kisinin-daha-cesedine-ulasildi-18952568
  • Beyazgazete (2013, Mayıs 12). Hortum Kızıltepe'de can aldı. http://beyazgazete.com/video/anahaber/tv8-74/2013/05/12/hortum-kiziltepe-de-can-aldi-409718.html
  • Meteociel.fr (‎‎2020, Kasım 8). Modèles - Archives des réanalyses du NCEP: https://www.meteociel.fr/modeles/archives/archives.php
  • Meteologix (‎2020, ‎Ağustos 20). Tr. ECMWF ERA5 Reanalysis: https://meteologix.com/tr/reanalysis/ecmwf-era5/turkey/wind-mean-direction/20171113-1800z.html
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Human Geography
Journal Section Research Articles
Authors

Ergin Canpolat 0000-0003-2123-3551

Ferhat Keserci 0000-0002-8653-6177

Mehmet Fatih Döker 0000-0002-0414-0428

Publication Date June 30, 2021
Acceptance Date December 26, 2020
Published in Issue Year 2021 Issue: 77

Cite

APA Canpolat, E., Keserci, F., & Döker, M. F. (2021). Finike ve Kumluca ovalarında yaşanan su hortumlarının oluşum süreçleri ve etkileri. Türk Coğrafya Dergisi(77), 19-36. https://doi.org/10.17211/tcd.827607

Yayıncı: Türk Coğrafya Kurumu