Research Article
BibTex RIS Cite

Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri

Year 2020, Volume: 2 Issue: 1, 101 - 114, 29.06.2020
https://doi.org/10.46464/tdad.737222

Abstract

Bu çalışmada Erzurum ve çevresi için gerilme tensör analizi ile hâkim gerilme rejimi araştırılmış, Coulomb gerilme analizi ile gerilme değişimi modellenmiştir. Her iki analiz için veri seti 1966-2019 yılları arasında meydana gelen 58 adet depreme (4.0≤Mw≤6.9) ait odak mekanizması çözümlerinden oluşmaktadır. Gerilme tensör analiz sonuçlarına göre en büyük (σ1) ve en küçük (σ3) asal gerilme eksenleri yatayda, orta asal gerilme (σ2) ekseni ise düşeyde çıkmış ve bu sonucun bölgedeki tektonik rejime bağlı doğrultu atımlı faylar ile uyumlu olduğu görülmüştür. Odak mekanizma çözümlerinden hareketle azimut ve dalım değerleri kullanılarak Coulomb gerilme değişimi elde edilmiştir. Özellikle Kuzey Anadolu Fay Zonu, Horasan-Narman Fayı ve Aşkale Fayında gerilmelerde artış olduğu tespit edilmiştir.

Supporting Institution

Atatürk Üniversitesi Deprem Araştırma Merkezi (ATA-DAM)

Thanks

Yazarlar, bu araştırmaya veri desteği sağlayan (lokasyon ve odak mekanizma çözümleri) T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) Deprem Dairesi Başkanlığı’na teşekkür eder. Şekil 1 ve 2 GMT programı (Wessel ve diğ. 2013) kullanılarak hazırlanmıştır. Şekillerde kullanılan fay verileri MTA çizim editöründen (Emre ve diğ. 2013; 2018) sayısallaştırılmıştır. Gerilme tensör analizi için StressInverse (Vavrycuk 2014), Coulomb gerilme analizi için ise Coulomb 3.4 (Lin ve Stein 2004, Toda ve diğ. 2005) programları kullanılmıştır. Yapılan analiz ve hesaplamalarda Atatürk Üniversitesi Deprem Araştırma Merkezi bilgisayar altyapısı kullanılmıştır.

References

  • AFAD, 2020a. Erişim adresi: https://deprem.afad.gov.tr/depremkatalogu
  • AFAD, 2020b. Erişim adresi: https://deprem.afad.gov.tr/faycozumleri
  • Bayrak Y., Yadav R.B.S., Kalafat D., Tsapanos T.M., Cinar H., Singh A.P., Bayrak E., Yilmaz S., Ocal F., Koravos G., 2013. Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics 601, 163-176.
  • Bayrak E., Yilmaz S., Softa M., Turker T., Bayrak Y., 2015. Earthquake hazard analysis for East Anatolian Fault Zone, Turkey, Natural Hazards 76, 1063–1077.
  • Bayrak E., 2019. Earthquake Hazard Analysis For Erzurum, Eastern Turkey, 4. International Conference on Civil, Environmental, Geology and Mining Engineering, 20-22 April 2019, Trabzon, Turkey, 731-740.
  • Bayrak E., Nas M., Bayrak Y., 2019. New macroseismic intensity predictive models for Turkey, Acta Geophysica 67, 1483–1513.
  • Bayrak E., Ozer C., Perk S., 2020. The Ground-Motion Attenuation Comparison: A case study for the 2017/05/11 Askale earthquake (Mw4.7), Brilliant Engineering 3, 22-26.
  • Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun S., Şaroglu F., 2013. 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration Special Publication, Erişim adresi: http://www.mta.gov.tr/
  • Emre O., Duman T. Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
  • Eyidogan H., Nalbant S.S., Barka A., King G.C.P., 1999. Static stress changes induced by 1934 Pasinler (M=6.8) and 1983 Horasan-Narman (M=6.8) earthquakes, Northeastern Turkey. Terra Nova 11, 38–44.
  • Gephart J.W., Forsyth D.W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, Journal of Geophysical Research: Solid Earth, 89(B11), 9305-9320.
  • Iturrieta P.C., Hurtado D.E., Cembrano J., Stanton-Yonge A., 2017. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling, Earth and Planetary Science Letters 473,71-82.
  • King G.C.P, Stein R.S., Lin J., 1994. Static stress changes and the triggering of earthquakes, Bulletin of the Seismological Society of America 84(3) , 935–953.
  • Kocyigit A., Canoglu M.C., 2017. Neotectonics and Seismicity of Erzurum Pull-apart Basin, East Turkey, Russian Geology and Geophysics 58, 99-122.
  • Lin J., Stein R.S., 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, Journal of Geophysical Research: Solid Earth 109.
  • Maden N., Aydin A., Kadirov F., 2015. Determination of the Crustal and Thermal Structure of the Erzurum-Horasan-Pasinler Basins (Eastern Turkey) Using Gravity and Magnetic Data, Pure Appl. Geophys. 172, 1599–1614.
  • Maden N., Ozturk S., 2015. Seismic b-Values, Bouguer Gravity and Heat Flow Data Beneath Eastern Anatolia, Turkey: Tectonic Implications, Surveys in Geophysics 36, 549–570.
  • McKenzie D., 1972. Active tectonics of the Mediterranean Region. Geophysical Journal of Royal Astronomical Society 30, 109–185.
  • Michael A.J., 1984. Determination of stress from slip data: faults and folds. Journal of Geophysical Research: Solid Earth 89(B13), 11517-11526.
  • Michael A.J., 1987. Use of focal mechanisms to determine stress: a control study. Journal Geophysical Research 92(B1), 357–368.
  • Ozer C., Ozyazicioglu M., Gok E., Polat O., 2019a. Imaging the Crustal Structure Throughout the East Anatolian Fault Zone, Turkey, by Local Earthquake Tomography, Pure and Applied Geophysics 176 (6), 2235-2261.
  • Ozer C., Kocadagistan M.E., Perk S., 2019b. Earthquake Monitoring Network of Erzurum: ATANET, International Journal of Scientific and Technological Research 5 (8), 35-47 (in Turkish).
  • Ozer C., Ozyazicioglu M., 2019. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area, Earth Sciences Research Journal 23 (3), 209-223.
  • Ozer C., 2019. Investigation of the Local Soil Effects of Erzurum and Its Surroundings Using SSR and HVSR Methods, DEU Journal of the Faculty of Engineering Journal of Science and Engineering 21 (61), 247-257 :10.21205/deufmd.2019216124 – (in Turkish).
  • Ozer C., Bayrak E., 2020. Coulomb Stress Changes after 11 May 2017 Askale-Erzurum (NE Turkey) Earthquake (Mw = 4.7). International Journal of Earth Sciences Knowledge and Applications 2 (1) 13-18.
  • Ozeren M.S., Holt W.E., 2010. The dynamics of the eastern Mediterranean and eastern Turkey, Geophysical Journal International 183 (3) , 1165–1184, doi: 10.1111/j.1365-246X.2010.04819.x.
  • Papadimitriou E.E., 2002. Mode of strong earthquake recurrence in the central Ionian Islands (Greece): possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bulletin of the Seismological Society of America 92, 3293–3308.
  • Sadigh K., Chang C., Egan J., Makdisi F., Youngs R., 1997. Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data, Seismological Research Letters 68:1, 180-189.
  • Sengor A.M.C., Tuysuz O., lmren C., Sakınc M., Eyidogan H., Gorur N., Le Pichon X., Rangin C., 2005. The North Anatolian Fault: A New Look, Annual Review of Earth and Planetary Sciences 33, 37-112.
  • Sertcelik F., 2012. Estimation of Coda Wave Attenuation in the East Anatolia Fault Zone, Turkey, Pure Appl. Geophys. 169 (2012), 1189–1204.
  • Simao N.M., Nalbant S.S, Sunbul F., Komec Mutlu A., 2016. Central and eastern Anatolian crustal deformation rate and velocity fields derived from GPS and earthquake data, Earth and Planetary Science Letters 433, 89–98.
  • Skobeltsyn G., Mellors R., Gok R., Turkelli N., Yetirmishli G., E. Sandvol E., 2014. Upper mantle S wave velocity structure of the East Anatolian-Caucasus region, Tectonics 33, 207–221, doi:10.1002/2013TC003334.
  • Şengör A.M.C., 1980. Türkiye’nin neotektoniğinin esasları, Türkiye Jeoloji Kurumu, Konferans serisi:2.
  • Stein R.S., King G.C.P, Lin J., 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude= 7.4 Landers earthquake, Science 258, 1328–1332.
  • Tan O, Taymaz T., 2003. Seismotectonics of Eastern Anatolia at the Intersections of East and North Anatolian Fault Zones and along the Caucasus – source and rupture histories of the Recent destructive earthquakes. International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Paleoseismology and Field Training Course in Paleoseismology, Middle East Technical University (METU) – Ankara, Abstracts, p. 160.
  • Tan O., 2004. The Source Mechanism Properties and Rupture Histories of the Caucasian, Eastern Anatolian and North Western Iranian Earthquakes. PhD Thesis, İstanbul Technical University, İstanbul, Turkey [in Turkish with English abstract].
  • Tan, O., Taymaz, T., 2004. Seismotectonics of the Caucasus and surrounding regions: source parameters and rupture histories of recent destructive earthquakes. AGU Fall Meeting, Session T14, San Francisco-California, EOS Transactions 85, 47.
  • Tan O., Taymaz T., 2006. Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. In: Dilek, Y. & Pavlides, S. (eds), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America Special Paper 409, 531–578.
  • Toda S., Stein R.S., Reasenberg P.A., Dieterich J.H., 1998. Stress transferred by the Mw = 6.5 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research 103, 24543–24565.
  • Toda S., Stein R.S., Richards-Dinger K., Bozkurt S.B., 2005. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer, Journal of Geophysical Research 110 (5), doi:10.1029/2004JB003415.
  • Vavrycuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophysical Journal International 199(1), 69-77.
  • Yalçınkaya E., 2003. 1 Mayıs 2003 Bingöl depremi (Mw=6.4) kuvvetli hareket kayıtlarının incelenmesi, Yerbilimleri 24 (28) , 99-108.
  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013. Generic Mapping Tools: Improved version released. EOS, Transactions American Geophysical Union 94, 409-410.
  • Ziv A., Rubin A.M., 2000. Static stress transfer and earthquake triggering: No lower threshold in sight?, Journal of Geophysical Research: Solid Earth 105(B6), 13631–13642.
  • Zoback M. L., 1992. First‐and second‐order patterns of stress in the lithosphere: The World Stress Map Project, Journal of Geophysical Research: Solid Earth, 97(B8), 11703-11728.

Stress Tensor and Coulomb Analysis for Erzurum and Its Surroundings

Year 2020, Volume: 2 Issue: 1, 101 - 114, 29.06.2020
https://doi.org/10.46464/tdad.737222

Abstract

ln this study, the dominant stress regime was investigated by stress tensor analysis, and stress change was modelled by Coulomb stress analysis for Erzurum and its surroundings. The data set consists of 58 earthquakes (4.0≤Mw≤6.9) focal mechanism solutions, occurred between 1966 and 2019 for both analyses. According to the stress tensor analysis results, the largest (σ1) and smallest (σ3) principal stress axes are horizontal and the middle principal stress (σ2) axis is vertical, which are compatible with strike-slip faults due to the tectonic regime in the region. Based on focal mechanism solutions, Coulomb stress variation was obtained by using azimuth and dip values of the principal stress axes. Especially, increase in stress is observed in the North Anatolian Fault Zone, Horasan-Narman fault and Askale fault.

References

  • AFAD, 2020a. Erişim adresi: https://deprem.afad.gov.tr/depremkatalogu
  • AFAD, 2020b. Erişim adresi: https://deprem.afad.gov.tr/faycozumleri
  • Bayrak Y., Yadav R.B.S., Kalafat D., Tsapanos T.M., Cinar H., Singh A.P., Bayrak E., Yilmaz S., Ocal F., Koravos G., 2013. Seismogenesis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics 601, 163-176.
  • Bayrak E., Yilmaz S., Softa M., Turker T., Bayrak Y., 2015. Earthquake hazard analysis for East Anatolian Fault Zone, Turkey, Natural Hazards 76, 1063–1077.
  • Bayrak E., 2019. Earthquake Hazard Analysis For Erzurum, Eastern Turkey, 4. International Conference on Civil, Environmental, Geology and Mining Engineering, 20-22 April 2019, Trabzon, Turkey, 731-740.
  • Bayrak E., Nas M., Bayrak Y., 2019. New macroseismic intensity predictive models for Turkey, Acta Geophysica 67, 1483–1513.
  • Bayrak E., Ozer C., Perk S., 2020. The Ground-Motion Attenuation Comparison: A case study for the 2017/05/11 Askale earthquake (Mw4.7), Brilliant Engineering 3, 22-26.
  • Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun S., Şaroglu F., 2013. 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration Special Publication, Erişim adresi: http://www.mta.gov.tr/
  • Emre O., Duman T. Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
  • Eyidogan H., Nalbant S.S., Barka A., King G.C.P., 1999. Static stress changes induced by 1934 Pasinler (M=6.8) and 1983 Horasan-Narman (M=6.8) earthquakes, Northeastern Turkey. Terra Nova 11, 38–44.
  • Gephart J.W., Forsyth D.W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, Journal of Geophysical Research: Solid Earth, 89(B11), 9305-9320.
  • Iturrieta P.C., Hurtado D.E., Cembrano J., Stanton-Yonge A., 2017. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling, Earth and Planetary Science Letters 473,71-82.
  • King G.C.P, Stein R.S., Lin J., 1994. Static stress changes and the triggering of earthquakes, Bulletin of the Seismological Society of America 84(3) , 935–953.
  • Kocyigit A., Canoglu M.C., 2017. Neotectonics and Seismicity of Erzurum Pull-apart Basin, East Turkey, Russian Geology and Geophysics 58, 99-122.
  • Lin J., Stein R.S., 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, Journal of Geophysical Research: Solid Earth 109.
  • Maden N., Aydin A., Kadirov F., 2015. Determination of the Crustal and Thermal Structure of the Erzurum-Horasan-Pasinler Basins (Eastern Turkey) Using Gravity and Magnetic Data, Pure Appl. Geophys. 172, 1599–1614.
  • Maden N., Ozturk S., 2015. Seismic b-Values, Bouguer Gravity and Heat Flow Data Beneath Eastern Anatolia, Turkey: Tectonic Implications, Surveys in Geophysics 36, 549–570.
  • McKenzie D., 1972. Active tectonics of the Mediterranean Region. Geophysical Journal of Royal Astronomical Society 30, 109–185.
  • Michael A.J., 1984. Determination of stress from slip data: faults and folds. Journal of Geophysical Research: Solid Earth 89(B13), 11517-11526.
  • Michael A.J., 1987. Use of focal mechanisms to determine stress: a control study. Journal Geophysical Research 92(B1), 357–368.
  • Ozer C., Ozyazicioglu M., Gok E., Polat O., 2019a. Imaging the Crustal Structure Throughout the East Anatolian Fault Zone, Turkey, by Local Earthquake Tomography, Pure and Applied Geophysics 176 (6), 2235-2261.
  • Ozer C., Kocadagistan M.E., Perk S., 2019b. Earthquake Monitoring Network of Erzurum: ATANET, International Journal of Scientific and Technological Research 5 (8), 35-47 (in Turkish).
  • Ozer C., Ozyazicioglu M., 2019. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area, Earth Sciences Research Journal 23 (3), 209-223.
  • Ozer C., 2019. Investigation of the Local Soil Effects of Erzurum and Its Surroundings Using SSR and HVSR Methods, DEU Journal of the Faculty of Engineering Journal of Science and Engineering 21 (61), 247-257 :10.21205/deufmd.2019216124 – (in Turkish).
  • Ozer C., Bayrak E., 2020. Coulomb Stress Changes after 11 May 2017 Askale-Erzurum (NE Turkey) Earthquake (Mw = 4.7). International Journal of Earth Sciences Knowledge and Applications 2 (1) 13-18.
  • Ozeren M.S., Holt W.E., 2010. The dynamics of the eastern Mediterranean and eastern Turkey, Geophysical Journal International 183 (3) , 1165–1184, doi: 10.1111/j.1365-246X.2010.04819.x.
  • Papadimitriou E.E., 2002. Mode of strong earthquake recurrence in the central Ionian Islands (Greece): possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bulletin of the Seismological Society of America 92, 3293–3308.
  • Sadigh K., Chang C., Egan J., Makdisi F., Youngs R., 1997. Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data, Seismological Research Letters 68:1, 180-189.
  • Sengor A.M.C., Tuysuz O., lmren C., Sakınc M., Eyidogan H., Gorur N., Le Pichon X., Rangin C., 2005. The North Anatolian Fault: A New Look, Annual Review of Earth and Planetary Sciences 33, 37-112.
  • Sertcelik F., 2012. Estimation of Coda Wave Attenuation in the East Anatolia Fault Zone, Turkey, Pure Appl. Geophys. 169 (2012), 1189–1204.
  • Simao N.M., Nalbant S.S, Sunbul F., Komec Mutlu A., 2016. Central and eastern Anatolian crustal deformation rate and velocity fields derived from GPS and earthquake data, Earth and Planetary Science Letters 433, 89–98.
  • Skobeltsyn G., Mellors R., Gok R., Turkelli N., Yetirmishli G., E. Sandvol E., 2014. Upper mantle S wave velocity structure of the East Anatolian-Caucasus region, Tectonics 33, 207–221, doi:10.1002/2013TC003334.
  • Şengör A.M.C., 1980. Türkiye’nin neotektoniğinin esasları, Türkiye Jeoloji Kurumu, Konferans serisi:2.
  • Stein R.S., King G.C.P, Lin J., 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude= 7.4 Landers earthquake, Science 258, 1328–1332.
  • Tan O, Taymaz T., 2003. Seismotectonics of Eastern Anatolia at the Intersections of East and North Anatolian Fault Zones and along the Caucasus – source and rupture histories of the Recent destructive earthquakes. International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Paleoseismology and Field Training Course in Paleoseismology, Middle East Technical University (METU) – Ankara, Abstracts, p. 160.
  • Tan O., 2004. The Source Mechanism Properties and Rupture Histories of the Caucasian, Eastern Anatolian and North Western Iranian Earthquakes. PhD Thesis, İstanbul Technical University, İstanbul, Turkey [in Turkish with English abstract].
  • Tan, O., Taymaz, T., 2004. Seismotectonics of the Caucasus and surrounding regions: source parameters and rupture histories of recent destructive earthquakes. AGU Fall Meeting, Session T14, San Francisco-California, EOS Transactions 85, 47.
  • Tan O., Taymaz T., 2006. Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. In: Dilek, Y. & Pavlides, S. (eds), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America Special Paper 409, 531–578.
  • Toda S., Stein R.S., Reasenberg P.A., Dieterich J.H., 1998. Stress transferred by the Mw = 6.5 Kobe, Japan, shock: effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research 103, 24543–24565.
  • Toda S., Stein R.S., Richards-Dinger K., Bozkurt S.B., 2005. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer, Journal of Geophysical Research 110 (5), doi:10.1029/2004JB003415.
  • Vavrycuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophysical Journal International 199(1), 69-77.
  • Yalçınkaya E., 2003. 1 Mayıs 2003 Bingöl depremi (Mw=6.4) kuvvetli hareket kayıtlarının incelenmesi, Yerbilimleri 24 (28) , 99-108.
  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013. Generic Mapping Tools: Improved version released. EOS, Transactions American Geophysical Union 94, 409-410.
  • Ziv A., Rubin A.M., 2000. Static stress transfer and earthquake triggering: No lower threshold in sight?, Journal of Geophysical Research: Solid Earth 105(B6), 13631–13642.
  • Zoback M. L., 1992. First‐and second‐order patterns of stress in the lithosphere: The World Stress Map Project, Journal of Geophysical Research: Solid Earth, 97(B8), 11703-11728.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Erdem Bayrak 0000-0001-9907-1463

Çağlar Özer 0000-0001-5401-2013

Şükran Perk 0000-0003-2229-9632

Publication Date June 29, 2020
Submission Date May 15, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Bayrak, E., Özer, Ç., & Perk, Ş. (2020). Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri. Türk Deprem Araştırma Dergisi, 2(1), 101-114. https://doi.org/10.46464/tdad.737222
AMA Bayrak E, Özer Ç, Perk Ş. Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri. TDAD. June 2020;2(1):101-114. doi:10.46464/tdad.737222
Chicago Bayrak, Erdem, Çağlar Özer, and Şükran Perk. “Erzurum Ve Çevresi İçin Gerilme Tensör Ve Coulomb Analizleri”. Türk Deprem Araştırma Dergisi 2, no. 1 (June 2020): 101-14. https://doi.org/10.46464/tdad.737222.
EndNote Bayrak E, Özer Ç, Perk Ş (June 1, 2020) Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri. Türk Deprem Araştırma Dergisi 2 1 101–114.
IEEE E. Bayrak, Ç. Özer, and Ş. Perk, “Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri”, TDAD, vol. 2, no. 1, pp. 101–114, 2020, doi: 10.46464/tdad.737222.
ISNAD Bayrak, Erdem et al. “Erzurum Ve Çevresi İçin Gerilme Tensör Ve Coulomb Analizleri”. Türk Deprem Araştırma Dergisi 2/1 (June 2020), 101-114. https://doi.org/10.46464/tdad.737222.
JAMA Bayrak E, Özer Ç, Perk Ş. Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri. TDAD. 2020;2:101–114.
MLA Bayrak, Erdem et al. “Erzurum Ve Çevresi İçin Gerilme Tensör Ve Coulomb Analizleri”. Türk Deprem Araştırma Dergisi, vol. 2, no. 1, 2020, pp. 101-14, doi:10.46464/tdad.737222.
Vancouver Bayrak E, Özer Ç, Perk Ş. Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri. TDAD. 2020;2(1):101-14.

OPEN ACCESS AND CC LICENSE

Content of this journal is licensed under a Creative Commons Attribution 4.0 International Non-Commercial License





Flag Counter