Effect of Imperfections in FEM Modelling on the Seismic Performance Assessment of Liquid Storage Tanks
Year 2021,
Volume: 3 Issue: 2, 110 - 124, 20.12.2021
Kayahan Akgül
,
Ali Sarı
,
Cenk Alhan
Abstract
Fluid-structure interaction (FSI) algorithms of the finite element method (FEM) is employed to evaluate the seismic response of three dimensional (3D) atmospheric tanks containing fluid under seismic loading by taking into account sources of nonlinearity of tanks. Numerical analysis model was generated both design drawing data and point cloud data obtained from 3D Laser Scan Process. All FEA Model was analysed and evaluated by performing dynamic time-history analysis under multi-dimensional. Fluid-structure interaction (FSI) was modelled with SPH technique. 5 pairs of horizontal ground motion time history components (two horizontal components for each ground motion record orthogonal to each other and vertical ground motion) was selected complying with near fault distance and frequency content of motion. Influence of imperfection in FEM modelling was evaluated in terms of seismic failure mechanism.
References
- Akgül K., 2021. Atmosferik Tankların Yapısal Risk Değerlendirmesi, İnşaat Mühendisliği Bölümü, Lisansüstü Eğitim Enstitüsü, İstanbul Üniversitesi-Cerrahpaşa, Doktora tezi (sürmekte)
- API 650, 2018. Welded Tanks for Oil Storage, American Petroleum Institute, 12th Ed., Mar. 2013; (Addendum 3 - Aug. 2018) 449 p.
- D’Amico M, Buratti N., 2019. Observational Seismic Fragility Curves for Steel Cylindrical Tanks, J. Press. Vess-T. ASME 141 (1), 1-14
- Eurocode 8: Design of structures for earthquake resistance, Part 4: Silos, tanks and pipelines, prEN 1998-4: (2003), 83 p.
- Gazi H., Alhan C.,2019. Reliability of elastomeric-isolated buildings under historical earthquakes with/without forward-directivity effects, Engineering Structures 195, 490-507
- Haroun M.A., Housner G.W., 1981. Seismic Design of Liquid Storage Tanks, Journal of the Technical Councils of ASCE 107 (1), 191-207
- Housner G.W., 1954. Earthquake Pressures on Fluid Containers, The Eighth Technical Report under Office of Naval Research, California Institute of Technology Pasadena, California, 42 p.
- Housner G.W., 1957. Dynamic Pressures on Accelerated Fluid Containers, Bulletin of the Seismological Society of America 47 (1), 15-35
- Housner G.W., 1963. The Dynamic Behaviour of Water Tanks, Bulletin of the Seismological Society of America 53 (2), 381-387
- LS-DYNA R11.0., 2017. Keyword User’s Manual Volume I-II, Livermore Software Technology Corporation, Livermore, California, 4805 p.
- Malhotra P.K., Wenk T., Weiland M., 2000. Simple Procedure of Seismic Analysis of Liquid Storage Tanks, Structural Engineering International 10 (3), 197-201
- Monaghan J.J., 1994. Simulating free surface flow with SPH, Journal of Computational Physics 110 (1034), 399-406
- NIST GCR 97-720, 1995. A Study of the Performance of Petroleum Storage Tanks During Earthquakes, United States Department of Commerce Technology Administration, National Institute of Standards and Technology, 118 p.
- Ozdemir Z., 2010. Nonlinear Fluid-Structure Interaction for Multi-Dimensional Seismic Analyses of Liquid Storage Tanks, Doktora Tezi, Boğaziçi Üniversitesi, 237 s.
- Özbulut M, 2019. Düzenli Dalgalar Üreten Bir Sayısal Dalga Tankının SPH Yöntemi ile Modellenmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 (2) , 551-570
- Westergaard H. M., 1931. Water Pressures on Dams during Earthquakes, ASCE Transactions, pp. 418-433, November 1931.
- Yang J.Y, Veletsos A.S, 1977, Earthquake Response of Liquid Storage Tanks, Advances in Civil Engineering through Engineering Mechanics, 1-24 May 1977, North Caroline, 1-24
Sonlu Elemanlar Modeli Anomaliliklerinin Sıvı Depolama Tanklarının Sismik Performans Değerlendirmesine Etkisi
Year 2021,
Volume: 3 Issue: 2, 110 - 124, 20.12.2021
Kayahan Akgül
,
Ali Sarı
,
Cenk Alhan
Abstract
Tank-sıvı etkileşiminin doğrusal olmayan (nonlineer) davranış kaynaklarını göz önüne alabilen sonlu elemanlar yöntemi (FEM) kullanılarak, sıvı ihtiva eden üç boyutlu atmosferik tankların deprem yükleri altında doğrusal olmayan davranışları incelenmiştir. Sayısal analiz modeli hem tasarım çizim verileri hem de üç boyutlu (3D) Lazer Tarama sonucu elde edilen nokta bulut verileri ile hazırlanmıştır. Sismik performans değerlendirmesi her iki farklı model tipi için üç doğrultulu zaman tanım alanı analizleri ile gerçekleştirilmiştir. Yapı-sıvı etkileşimi SPH (Smoothed Particle Hydrodynamics) metodu tekniği ile modellenmiştir. Sismik analizlerde deprem yer hareketleri fay mesafelerinin yakınlığı ve kayıt frekans muhtevasına göre seçilmiştir. İki farklı modelleme yaklaşımının karşılaştırılması sismik hasar mekanizmaları üzerinden değerlendirilmiştir.
References
- Akgül K., 2021. Atmosferik Tankların Yapısal Risk Değerlendirmesi, İnşaat Mühendisliği Bölümü, Lisansüstü Eğitim Enstitüsü, İstanbul Üniversitesi-Cerrahpaşa, Doktora tezi (sürmekte)
- API 650, 2018. Welded Tanks for Oil Storage, American Petroleum Institute, 12th Ed., Mar. 2013; (Addendum 3 - Aug. 2018) 449 p.
- D’Amico M, Buratti N., 2019. Observational Seismic Fragility Curves for Steel Cylindrical Tanks, J. Press. Vess-T. ASME 141 (1), 1-14
- Eurocode 8: Design of structures for earthquake resistance, Part 4: Silos, tanks and pipelines, prEN 1998-4: (2003), 83 p.
- Gazi H., Alhan C.,2019. Reliability of elastomeric-isolated buildings under historical earthquakes with/without forward-directivity effects, Engineering Structures 195, 490-507
- Haroun M.A., Housner G.W., 1981. Seismic Design of Liquid Storage Tanks, Journal of the Technical Councils of ASCE 107 (1), 191-207
- Housner G.W., 1954. Earthquake Pressures on Fluid Containers, The Eighth Technical Report under Office of Naval Research, California Institute of Technology Pasadena, California, 42 p.
- Housner G.W., 1957. Dynamic Pressures on Accelerated Fluid Containers, Bulletin of the Seismological Society of America 47 (1), 15-35
- Housner G.W., 1963. The Dynamic Behaviour of Water Tanks, Bulletin of the Seismological Society of America 53 (2), 381-387
- LS-DYNA R11.0., 2017. Keyword User’s Manual Volume I-II, Livermore Software Technology Corporation, Livermore, California, 4805 p.
- Malhotra P.K., Wenk T., Weiland M., 2000. Simple Procedure of Seismic Analysis of Liquid Storage Tanks, Structural Engineering International 10 (3), 197-201
- Monaghan J.J., 1994. Simulating free surface flow with SPH, Journal of Computational Physics 110 (1034), 399-406
- NIST GCR 97-720, 1995. A Study of the Performance of Petroleum Storage Tanks During Earthquakes, United States Department of Commerce Technology Administration, National Institute of Standards and Technology, 118 p.
- Ozdemir Z., 2010. Nonlinear Fluid-Structure Interaction for Multi-Dimensional Seismic Analyses of Liquid Storage Tanks, Doktora Tezi, Boğaziçi Üniversitesi, 237 s.
- Özbulut M, 2019. Düzenli Dalgalar Üreten Bir Sayısal Dalga Tankının SPH Yöntemi ile Modellenmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 (2) , 551-570
- Westergaard H. M., 1931. Water Pressures on Dams during Earthquakes, ASCE Transactions, pp. 418-433, November 1931.
- Yang J.Y, Veletsos A.S, 1977, Earthquake Response of Liquid Storage Tanks, Advances in Civil Engineering through Engineering Mechanics, 1-24 May 1977, North Caroline, 1-24