Research Article
BibTex RIS Cite

Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği

Year 2022, Volume: 4 Issue: 1, 98 - 136, 08.06.2022
https://doi.org/10.46464/tdad.1042767

Abstract

Ege bölgesi ve Denizli havzası yüksek sismik aktiviteye ve zengin jeotermal alanlara sahiptir. Ayrıca bölgede yoğun bir deprem etkinliği de gözlenmektedir. Bölgede petrol, gaz ve jeotermal arama ve üretimi için boşluk basıncı hesabı, kaydedilen bu deprem verilerinin analizi ile belirlenen 1-B ve 3-B sismik hızlardan hesaplanabilir. Bu çalışma kapsamında Denizli Havzasının boşluk basıncı literatürdeki mevcut Vp hızları kullanılarak hesaplanmıştır. Elde edilen sonuçlar sahada açılmış jeotermal kuyuları ve doğal jeotermal sıcak su çıkışları ile karşılaştırılmıştır. Karşılaştırma sonucunda elde edilen bilgilerin kuyu bilgileri ile uyumlu oldukları görülmüştür. Sonuç olarak, bu yöntem jeotermal alanlarda sondaj için boşluk basınç bölgelerinin belirlenmesinde kullanılabilir ve kuyu lokasyonunda ek bir bilgi olarak kabul edilebilir.

Supporting Institution

Akça Enerji Üretim Otoprodüktör Grubu A.Ş

Thanks

Doç.Dr. Bülent Kaypak, Ankara Üniversitesi-Jeofizik Mühendisliği Bölümü Öğretim Görevlisi Hakan TEKKAYA olmak üzere Akça Enerji Üretim Otoprodüktör Grubu A.Ş.

References

  • Akyol N., Zhu L., Mitchell B.J., Sozbilir H., Kekovali K., 2006. Crustal structure and local seismicity in western Anatolia, Geophysical Journal International 166, 1259-1269.
  • Al-Amri A., Abdelrahman K., Mellors R., Harris D., Al-Amri Y., 2020. Seismic Identification of Geothermal Prospecting in Harrat Rahat, Northern Arabian Shield, Arabian Journal of Geosciences 13(214), http://doi.org/10.1007/s12517-020-05300-2.
  • Altunel E., Barka A., 1996. Evaluation of archaeoseismic damages at Hierapolis, Geological Bulletin of Turkey 39, 65-74.
  • Ates A., Kearey P., Tufan S., 1999. New gravity and magnetic maps of Turkey, Geophysical Journal International 136, 499-502.
  • Ates R.C., Bayulke N., 1982. The 19 August 1976 Denizli, Turkey, earthquake: evaluation of the strong motion accelerograph record, Bulletin of the Seismological Society of America 72, 1635-1649.
  • Berge P.A., Bonner B.P., 2002. Seismic velocities contain information about depth, lithology, fluid content and microstructure, Symposium on the Application of Geophysics to Engineering and Environmental Problems, http://doi.org/10.4133/1.2927173.
  • Blangy J.P., 1992. Integrated seismic lithologic interpretation: The petrophysical basis, PhD Thesis, Stanford University, USA, 414 p.
  • Bowers G.L., 1995. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides under compaction undercompaction, SPE Drilling & Completion 10, 89-95. http://dx.doi.org/10.2118/27488-PA.
  • Bowers G.L., 2002. Detecting High Overpressure, The Leading Edge 21(2), 174-177.
  • Charlety J., Cuenot N., Dorbath C., Dorbath L., 2006. Tomographic study of the seismic velocity at the Soultz-sous-Forets EGS/HDR site, Geothermmics 35, 532-543.
  • Duman O., 2009. Denizli-Kızıldere sahası jeotermal enerji aramaları jeofizik-özdirenç etüdü raporu, MTA raporu, Rapor no: 11188.
  • Eaton B.A., 1972. Graphical method predicts geopressure worldwide, World Oil 182, 51-56.
  • Erees F.S., Aytas S., Sac M.M., Yener G., Şalk M., 2007. Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey, Radiation Measurements 42, 80-86.
  • Gardner G.H.F., Gardner L.W., Gregory A.R., 1974. Formation velocity and density- the diagnostic basic for stratigraphic traps, Geophysics 39(6), 770-780.
  • Gökçen N., 1982. Denizli ve Muğla çevresi Neojen istifinin ostrakod biyostratigrafisi, Yerbilimleri 8, 111-132.
  • Gurgey K., Simoneit B.R.T., Batı Z., Karamanderesi İ.H., Varol B., 2007. Origin of petro- liferous bitumen from the Büyük Menderes-Gediz geothermal graben system, Denizli-Sarayköy, western Turkey, Applied Geochemistry 22, 1393-1415.
  • Huffman A.R., 2002. The future of pore-pressure prediction using geophysical methods, The Leading Edge 21(2), 199-205.
  • Julian B.R., Pitt A.R., Foulger G.R., 1998. Seismic image of a CO2 reservoir beneath a seismically active volcano, Geophys. J. Int. 133(1), F7-F10, https://doi.org/10.1046/j.1365-246X.1998.1331540.x
  • Kaypak B., Gokkaya G., 2012. 3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey, Journal of Volcanology and Geothermal Research 211-212, 47-60.
  • Kaypak B., Venedik G., 2011. Denizli havzası 3-B sismik hız yapısının jeolojik, tektonik, hidrotermal ve depremsellikle ilişkisi, 1.Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 11-14 Ekim 2011, Ankara-Türkiye, Erişim adresi: http://www.tdmd.org.tr/TR/Genel/4.Oturum/1.TDMSK_108.pdf
  • Lahn E., 1948. Denizli-Sarayköy-Buldan bölgesinin deprem faaliyeti hakkında not, Türkiye Jeoloji Kurumu Bülteni 1, 39-50. Erişim Linki: https://www.acarindex.com/pdfs/29879
  • Lebedev E.B., Kern H., Pavlenkova N.I., Lukanin O.A., Lobanov K.V., Zharikov A.V., Popp, T., 2021, Compressional wave velocity measurements on mafic-ultramafic rocks under high aqueous fluid pressure and temperature help to explain low velocity zones in the lithosphere, Scientific Reports 11,13424 https://doi.org/10.1038/s41598-021-92248-2.
  • McKenzie D.P., 1978. Active tectonics of the Alpine-Himalayan Belt: The Aegean Sea and its surrounding regions, Geophys. J. R. Astr. Soc. 55, 217-254.
  • MTA, 2021. Yerbilimleri Harita Görüntüleyici, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Erişim adresi: http://yerbilimleri.mta.gov.tr.
  • Ozer C., Polat, O., 2017. Local earthquake tomography of Izmir geothermal area, Aegean region of Turkey, Bollettino di Geofisica Teorica ed Applicata 58 (1), 17-42.
  • Ozer C., Ozyazicioglu M., 2019. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area, Earth Sciences Research Journal 23(3), 209-223.
  • Ozer C., 2021. 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazığ earthquake (mw = 6.8), Eastern Turkey, Natural Hazards 108(2), 1901-1917.
  • Özgüler M.E., Turgay M.I., Şahin H., 1983. Denizli jeotermal alanlarında jeofizik çalışmalar, MTA Bülteni 99-100,129-141.
  • Piccardi L., 2007. The AD 60 Denizli Basin earthquake and the apparition of Archangel Michael at Colossae (Aegean Turkey), Geological Society, London, Special Publicaions 273, 95-105
  • Sayers C.M., Johnson G.M., Denyer G., 2002. Predrill pore-pressure prediction using seismic data, Geophysics 67(4), 1286-1292.
  • Sengor A.M.C., 1987. Cross-faults and differential stretching of hanging walls in regions of lowangle normal faulting; Examples from western Turkey. (In: Continental Extensional Tectonics, Editors: Coward M.P., Dewey J.F., Hancock P.L., 619 p, Geological Society, London, Special Publications), 575-589.
  • Soleymani H., Riahi M.A., 2012. Velocity based pore pressure prediction-A case study at one of the Iranian southwest oil fields, Journal of Petroleum Science and Engineering 94-95, 40-46.
  • Subay E., 2019. Tosunlar jeotermal sahasının (denizli) hidrojeolojik ve hidrojeokimyasal incelemesi, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 111 s.
  • Takei Y., 2002. Effect of pore geometry on Vp/Vs: from equilibrium geometry to crack, J. Geophys. Res. 107, Erişim adresi: http://doi.org/10.1029/2001JB00522.
  • Topal S., 2003. Denizli neojen istifinin startigrafisi ve tektonik özellikleri. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 63 s.
  • Uyanik O., 1999. Kayaçların sismik hızlar ve kayma direncinin incelenmesi, 52. Türkiye Jeoloji Kurultayı Bildiriler kitabı, 63-70. Erişim adresi: https://www.researchgate.net/publication/273058917_Kayaclarda_Sismik_Hizlar_ve_Kayma_Direncinin_Incelenmesi
  • Uysal I.T., Feng Y., Zhao J., Isik V., Nuriel P., Golding S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary, Chemical Geology 265, 442-454.
  • Wang Z., Wang R., 2015. Pore pressure prediction using geophysical methods in carbonate reservoirs: Current status, challenges and way ahead, Journal of Natural Gas Science and Engineering 27(2), 986-993.

Relationship between Seismic Velocity and Pore Pressure: Case Study of Denizli Basin

Year 2022, Volume: 4 Issue: 1, 98 - 136, 08.06.2022
https://doi.org/10.46464/tdad.1042767

Abstract

The Aegean region and Denizli basin have high seismic activity and rich geothermal fields. Furthermore, a remarkable earthquake activity is also observed in the region. The pore pressure calculation for oil, gas and geothermal exploration and production in the region can be computed from the 1-D and 3-D seismic velocities determined by the analysis of seismologic data. In the frame of this study, the pore pressure of Denizli Basin was calculated using Vp velocities obtained from available literature. Obtained results were compared with geothermal wells and hot water springs in the field. We report that the information obtained from the comparison is coherent with the well data. As a result, this technique can be used to determine the pore pressure zones for the drill in geothermal areas, and can be considered as an additional information in the well location.

References

  • Akyol N., Zhu L., Mitchell B.J., Sozbilir H., Kekovali K., 2006. Crustal structure and local seismicity in western Anatolia, Geophysical Journal International 166, 1259-1269.
  • Al-Amri A., Abdelrahman K., Mellors R., Harris D., Al-Amri Y., 2020. Seismic Identification of Geothermal Prospecting in Harrat Rahat, Northern Arabian Shield, Arabian Journal of Geosciences 13(214), http://doi.org/10.1007/s12517-020-05300-2.
  • Altunel E., Barka A., 1996. Evaluation of archaeoseismic damages at Hierapolis, Geological Bulletin of Turkey 39, 65-74.
  • Ates A., Kearey P., Tufan S., 1999. New gravity and magnetic maps of Turkey, Geophysical Journal International 136, 499-502.
  • Ates R.C., Bayulke N., 1982. The 19 August 1976 Denizli, Turkey, earthquake: evaluation of the strong motion accelerograph record, Bulletin of the Seismological Society of America 72, 1635-1649.
  • Berge P.A., Bonner B.P., 2002. Seismic velocities contain information about depth, lithology, fluid content and microstructure, Symposium on the Application of Geophysics to Engineering and Environmental Problems, http://doi.org/10.4133/1.2927173.
  • Blangy J.P., 1992. Integrated seismic lithologic interpretation: The petrophysical basis, PhD Thesis, Stanford University, USA, 414 p.
  • Bowers G.L., 1995. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides under compaction undercompaction, SPE Drilling & Completion 10, 89-95. http://dx.doi.org/10.2118/27488-PA.
  • Bowers G.L., 2002. Detecting High Overpressure, The Leading Edge 21(2), 174-177.
  • Charlety J., Cuenot N., Dorbath C., Dorbath L., 2006. Tomographic study of the seismic velocity at the Soultz-sous-Forets EGS/HDR site, Geothermmics 35, 532-543.
  • Duman O., 2009. Denizli-Kızıldere sahası jeotermal enerji aramaları jeofizik-özdirenç etüdü raporu, MTA raporu, Rapor no: 11188.
  • Eaton B.A., 1972. Graphical method predicts geopressure worldwide, World Oil 182, 51-56.
  • Erees F.S., Aytas S., Sac M.M., Yener G., Şalk M., 2007. Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey, Radiation Measurements 42, 80-86.
  • Gardner G.H.F., Gardner L.W., Gregory A.R., 1974. Formation velocity and density- the diagnostic basic for stratigraphic traps, Geophysics 39(6), 770-780.
  • Gökçen N., 1982. Denizli ve Muğla çevresi Neojen istifinin ostrakod biyostratigrafisi, Yerbilimleri 8, 111-132.
  • Gurgey K., Simoneit B.R.T., Batı Z., Karamanderesi İ.H., Varol B., 2007. Origin of petro- liferous bitumen from the Büyük Menderes-Gediz geothermal graben system, Denizli-Sarayköy, western Turkey, Applied Geochemistry 22, 1393-1415.
  • Huffman A.R., 2002. The future of pore-pressure prediction using geophysical methods, The Leading Edge 21(2), 199-205.
  • Julian B.R., Pitt A.R., Foulger G.R., 1998. Seismic image of a CO2 reservoir beneath a seismically active volcano, Geophys. J. Int. 133(1), F7-F10, https://doi.org/10.1046/j.1365-246X.1998.1331540.x
  • Kaypak B., Gokkaya G., 2012. 3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey, Journal of Volcanology and Geothermal Research 211-212, 47-60.
  • Kaypak B., Venedik G., 2011. Denizli havzası 3-B sismik hız yapısının jeolojik, tektonik, hidrotermal ve depremsellikle ilişkisi, 1.Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 11-14 Ekim 2011, Ankara-Türkiye, Erişim adresi: http://www.tdmd.org.tr/TR/Genel/4.Oturum/1.TDMSK_108.pdf
  • Lahn E., 1948. Denizli-Sarayköy-Buldan bölgesinin deprem faaliyeti hakkında not, Türkiye Jeoloji Kurumu Bülteni 1, 39-50. Erişim Linki: https://www.acarindex.com/pdfs/29879
  • Lebedev E.B., Kern H., Pavlenkova N.I., Lukanin O.A., Lobanov K.V., Zharikov A.V., Popp, T., 2021, Compressional wave velocity measurements on mafic-ultramafic rocks under high aqueous fluid pressure and temperature help to explain low velocity zones in the lithosphere, Scientific Reports 11,13424 https://doi.org/10.1038/s41598-021-92248-2.
  • McKenzie D.P., 1978. Active tectonics of the Alpine-Himalayan Belt: The Aegean Sea and its surrounding regions, Geophys. J. R. Astr. Soc. 55, 217-254.
  • MTA, 2021. Yerbilimleri Harita Görüntüleyici, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Erişim adresi: http://yerbilimleri.mta.gov.tr.
  • Ozer C., Polat, O., 2017. Local earthquake tomography of Izmir geothermal area, Aegean region of Turkey, Bollettino di Geofisica Teorica ed Applicata 58 (1), 17-42.
  • Ozer C., Ozyazicioglu M., 2019. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area, Earth Sciences Research Journal 23(3), 209-223.
  • Ozer C., 2021. 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazığ earthquake (mw = 6.8), Eastern Turkey, Natural Hazards 108(2), 1901-1917.
  • Özgüler M.E., Turgay M.I., Şahin H., 1983. Denizli jeotermal alanlarında jeofizik çalışmalar, MTA Bülteni 99-100,129-141.
  • Piccardi L., 2007. The AD 60 Denizli Basin earthquake and the apparition of Archangel Michael at Colossae (Aegean Turkey), Geological Society, London, Special Publicaions 273, 95-105
  • Sayers C.M., Johnson G.M., Denyer G., 2002. Predrill pore-pressure prediction using seismic data, Geophysics 67(4), 1286-1292.
  • Sengor A.M.C., 1987. Cross-faults and differential stretching of hanging walls in regions of lowangle normal faulting; Examples from western Turkey. (In: Continental Extensional Tectonics, Editors: Coward M.P., Dewey J.F., Hancock P.L., 619 p, Geological Society, London, Special Publications), 575-589.
  • Soleymani H., Riahi M.A., 2012. Velocity based pore pressure prediction-A case study at one of the Iranian southwest oil fields, Journal of Petroleum Science and Engineering 94-95, 40-46.
  • Subay E., 2019. Tosunlar jeotermal sahasının (denizli) hidrojeolojik ve hidrojeokimyasal incelemesi, Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 111 s.
  • Takei Y., 2002. Effect of pore geometry on Vp/Vs: from equilibrium geometry to crack, J. Geophys. Res. 107, Erişim adresi: http://doi.org/10.1029/2001JB00522.
  • Topal S., 2003. Denizli neojen istifinin startigrafisi ve tektonik özellikleri. Yüksek Lisans Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 63 s.
  • Uyanik O., 1999. Kayaçların sismik hızlar ve kayma direncinin incelenmesi, 52. Türkiye Jeoloji Kurultayı Bildiriler kitabı, 63-70. Erişim adresi: https://www.researchgate.net/publication/273058917_Kayaclarda_Sismik_Hizlar_ve_Kayma_Direncinin_Incelenmesi
  • Uysal I.T., Feng Y., Zhao J., Isik V., Nuriel P., Golding S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary, Chemical Geology 265, 442-454.
  • Wang Z., Wang R., 2015. Pore pressure prediction using geophysical methods in carbonate reservoirs: Current status, challenges and way ahead, Journal of Natural Gas Science and Engineering 27(2), 986-993.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Orhan Gureli 0000-0001-5909-2171

Publication Date June 8, 2022
Submission Date December 24, 2021
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Gureli, O. (2022). Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği. Türk Deprem Araştırma Dergisi, 4(1), 98-136. https://doi.org/10.46464/tdad.1042767
AMA Gureli O. Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği. TDAD. June 2022;4(1):98-136. doi:10.46464/tdad.1042767
Chicago Gureli, Orhan. “Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği”. Türk Deprem Araştırma Dergisi 4, no. 1 (June 2022): 98-136. https://doi.org/10.46464/tdad.1042767.
EndNote Gureli O (June 1, 2022) Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği. Türk Deprem Araştırma Dergisi 4 1 98–136.
IEEE O. Gureli, “Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği”, TDAD, vol. 4, no. 1, pp. 98–136, 2022, doi: 10.46464/tdad.1042767.
ISNAD Gureli, Orhan. “Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği”. Türk Deprem Araştırma Dergisi 4/1 (June 2022), 98-136. https://doi.org/10.46464/tdad.1042767.
JAMA Gureli O. Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği. TDAD. 2022;4:98–136.
MLA Gureli, Orhan. “Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği”. Türk Deprem Araştırma Dergisi, vol. 4, no. 1, 2022, pp. 98-136, doi:10.46464/tdad.1042767.
Vancouver Gureli O. Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği. TDAD. 2022;4(1):98-136.

OPEN ACCESS AND CC LICENSE

Content of this journal is licensed under a Creative Commons Attribution 4.0 International Non-Commercial License





Flag Counter