Research Article
BibTex RIS Cite

A Statistical Analysis and Evaluation on the Earthquake Forecasting and Hazard for Lake Van and its adjacent area (Türkiye)

Year 2022, Volume: 4 Issue: 2, 191 - 209, 13.12.2022
https://doi.org/10.46464/tdad.1108730

Abstract

In this study, current earthquake hazard is tried to present and earthquake forecasting is made for Lake Van and its adjacent area for the next five years. For this purpose, a statistical analysis is achieved with the concomitant use of the b-value, Z-value, relative intensity (RI) and pattern informatics (PI) data. In addition, for the earthquake forecasting in the intermediate term and hazard, a comprehensive discussion is made with the studies analyzing the different seismological and geophysical variables in literature. The relations between these parameters reveal more accurate and reliable approaches. Consequently, at the beginning of 2022, particularly the areas having small b-value and large Z-value with the hotspots (possible earthquake areas) between 2022 and 2027 from the combined forecast map are determined in and around Muradiye, Çaldıran, Özalp, Van city centre and Gevaş including Çaldıran, Yeniköşk, Erciş and Malazgirt faults with Saray and Van Fault zones.

References

  • Alkan H., Cinar H., Oreshin S., 2020. Lake Van (southeastern Turkey) experiment: Receiver function analyses of lithospheric structure from teleseismic observations, Pure and Applied Geophysics 177, 3891-3909.
  • Arabasz W.J., Hill S.J., 1996. Applying Reasenberg’s cluster analysis algorithm to regional earthquake catalogs outside California (abstract), Seismological Research Letters 67(2), 30.
  • Bayrak E., Ozer C., Cakici H., Kocadagistan M.E., 2021. January 24, 2020 Sivrice (Turkey) earthquake (Mw6.8): Evaluation of Ground-Motion Prediction Equations and Engineering Seismology Studies, Turk Deprem Arastirma Dergisi 3(2), 125-148, https://doi.org/10.46464/tdad.1003057
  • Bayrak Y., Ozturk S., Cinar H., Kalafat D., Tsapanos T.M., Koravos G.Ch., Leventakis G.A., 2009. Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey, Engineering Geology 10, 200-210.
  • Biro Y., Siyahi B., Akbas B., 2020. The Spectral Decay Parameter κ (kappa) for the Near Site Events in Van Region, Turk Deprem Arastirma Dergisi 2(1), 1-13, https://doi.org/10.46464/tdad.727847
  • Bozkurt E., 2001. Neotectonics of Turkey-a synthesis, Geodinamica Acta 14, 3-30.
  • Console R., Montuori C., Murru M., 2000. Statistical assessment of seismicity patterns in Italy: Are they precursors of subsequent events?, Journal of Seismology 4, 435-449.
  • Cukur D., Krastel S., Tomonaga Y., Schmincke H.U., Sumita M., Meydan A.F., Cagatay M.N., Toker M., Kim S.P., Kong G.S., Horozal S., 2017. Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications, International Journal of Earth Sciences 106, 239-253.
  • Derode B., Madariaga R., Campos J., 2021. Seismic rate variations prior to the 2010 Maule, Chile Mw 8.8 giant megathrust earthquake, Nature 11, 2705.
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
  • Enescu B., Ito K., 2002. Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 Western Tottori earthquake, Earth Planets and Space 54, 847-859.
  • Frohlich C., Davis S., 1993. Teleseismic b-values: Or, much ado about 1.0, Journal of Geophysical Research 98(B1), 631-644.
  • Gutenberg R., Richter C.F., 1944. Frequency of earthquakes in California, Bulletin of the Seismological Society of America 34, 185-188.
  • Holliday J.R., Nanjo K.Z., Tiampo K.F., Rundle J.B., Turcotte D.L., 2005. Earthquake forecasting and its verification, Nonlinear Process in Geophysics 12, 965-977.
  • Holliday J.R., Rundle J.B., Tiampo K.F., Turcotte D.L., 2006. Using earthquake intensities to forecast earthquake occurrence time, Nonlinear Process in Geophysics 13, 585-593.
  • Holliday J.R., Chen C-C., Tiampo K.F., Rundle J.B., Turcotte D.L., Donnellan A., 2007. A RELM earthquake forecast based on Pattern Infformatics, Seismological Research Letters 78(1), 87-93.
  • Irmak T.S., Dogan B., Karakas A., 2012. Source mechanism of the 23 October 2011, Van (Turkey) earthquake (Mw=7.1) and aftershocks with its tectonic implications, Earth Planets Space 64, 991-1003.
  • Keilis-Borok V.I., 1996. Intermediate term earthquake prediction, The Proceedings of the National Academy of Sciences USA 93, 3748-3755.
  • Keskin M., 2003. Magma generation by slab steepening and breakoff beneath a subduction–accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysics Research Letters 30(24), 8046.
  • KRDAE-BDTİM, 2022. Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi Deprem Kataloğu, Erişim adresi: http://www.koeri.boun.edu.tr/sismo/zeqdb
  • Mizrahi L., Nandan S., Wiemer S., 2021. The effect of declustering on the size distribution of mainshocks. Seismological Research Letters 92(4), 2333-2342.
  • Nanjo K.Z., Rundle J.B., Holliday J.R., Turcotte D.L., 2006a. Pattern Informatics and its application for optimal forecasting of large earthquakes in Japan, Pure and Applied Geophysics 163, 2417-2432.
  • Nanjo K.Z., Holliday J.R., Chen C.-C., Rundle J.B., Turcotte D.L., 2006b. Application of modified pattern informatics method to forecasting the locations of future large earthquakes in the central Japan, Tectonophysics 424, 351-366.
  • Ozturk S., 2011. Characteristics of seismic activity in the western, central and eastern parts of the North Anatolian Fault Zone, Turkey: temporal and spatial analysis, Acta Geophysica 59, 209-238.
  • Ozturk S., 2018. Earthquake hazard potential in the Eastern Anatolian region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of Earth Sciences 12(1), 215-236.
  • Ozturk S., 2020. A study on the variations of recent seismicity in and around the Central Anatolian region of Turkey, Physics of the Earth and Planetary Interiors 301 (106453), 1-11.
  • Ozer C., Ozturk S., Pamuk E., 2022. Tectonic and structural characteristics of Erzurum and its surroundings (Eastern Turkey): a detailed comparison between different geophysical parameters, Turkish Journal of Earth Secinces 31(1), 85-108.
  • Öztürk S., 2009. An application of the earthquake hazard and aftershock probability evaluation methods to Turkey earthquakes. PhD Thesis, Karadeniz Technical University, Trabzon, Turkey (in Turkish with English abstract), pp 346.
  • Polat O., Gok E., Yılmaz D., 2008. Earthquake hazard of the Aegean extension region (West Turkey), Turkish Journal of Earth Sciences 17, 593-614.
  • Reasenberg P.A., 1985. Second-order moment of Central California seismicity, 1969-1982, Journal of Geophysical Research 90(B7), 5479-5495.
  • Reilinger R., McClusky S., Vernant P., Lawrence S., Ergintav S., Cakmak R., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research 111, B05411.
  • Rundle J.B., Tiampo K.F., Klein W., Martins J.S.S., 2002. Self-organization in leaky threshold systems: The influence of near-mean field Dynamics and its implications for earthquakes, neurobiology and forecasting, The Proceedings of the National Academy of Sciences USA 99 (Supplement 1), 2514-2521.
  • Scholz C.H., 2015. On the stress dependence of the earthquake b value, Geophysical Research Letters 42, 1399-1402.
  • Selcuk L., Selcuk A.S., Beyaz T., 2010. Probabilistic seismic hazard assessment for Lake Van basin, Turkey, Natural Hazards 54, 949-965.
  • Tiampo K.F., Rundle J.B., McGinnis S.A., Klein W., 2002. Pattern dynamics and forecast methods in seismically active regions, Pure and Applied Geophysics 159, 2429-2467.
  • Toker M., Pinar A., Hoskan N., 2021. An integrated critical approach to off-fault strike-slip motion triggered by the 2011 Van mainshock (Mw 7.1), Eastern Anatolia (Turkey): New stress field constraints on subcrustal deformation, Journal of Geodynamics 147 (101861), 1-25.
  • Utkucu M., Durmus H., Yalcin H., Budakoglu E., Isik E., 2013. Coulomb static stress changes before and after the 23 October 2011 Van, Eastern Turkey, earthquake (Mw=7.1): implications for the earthquake hazard mitigation, Natural Hazards and Earth System Sciences 13, 1-14.
  • Utsu T., 1971. Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1), Journal of the Faculty of Science, Hokkaido University Series VII (Geophysics) 3, 379-441.
  • Varotsos P., Alexopoulos K., 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes. II. determination of epicenter and magnitude, Tectonophysics 110, 99-125.
  • Wiemer S., 2001. A software package to analyze seismicity: ZMAP, Seismological Research Letters 72(2), 373-382.
  • Wiemer S., Wyss M., 1994. Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes, Bulletin of the Seismological Society of America 84(3), 900-916.
  • Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bulletin of the Seismological Society of America 90(3), 859-869.
  • Wyss M., Habermann R.E., 1988. Precursory seismic quiescence, Pure and Applied Geophysics 126(2–4), 319-332.

Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme

Year 2022, Volume: 4 Issue: 2, 191 - 209, 13.12.2022
https://doi.org/10.46464/tdad.1108730

Abstract

Bu çalışmada, Van Gölü ve civarı için güncel deprem tehlikesi ortaya konmaya çalışılmış ve gelecek beş yıl için deprem tahmini yapılmıştır. Bu amaçla, b-değeri, Z-değeri, göreceli yoğunluk (RI) ve oluşum bilgisi (PI) verilerinin birlikte kullanımı ile istatistiksel bir analiz gerçekleştirilmiştir. Ayrıca, orta vadede deprem tahmini ve tehlikesi için literatürdeki farklı sismolojik ve jeofiziksel değişkenleri analiz eden çalışmalarla detaylı bir tartışma yapılmıştır. Bu parametreler arasındaki ilişkiler daha doğru ve güvenilir yaklaşımlar ortaya koymuştur. Sonuç olarak, 2022 yılı başında, özellikle düşük b-değeri ve yüksek Z-değerine sahip bölgelerle birleştirilmiş tahmin haritasında 2022-2027 yılları arasındaki sıcak noktalar (olası deprem bölgeleri) Çaldıran, Yeniköşk, Erciş ve Malazgirt fayları ile Saray ve Van Fay zonlarını içeren Muradiye, Çaldıran, Özalp, Van şehir merkezi ve Gevaş civarında tespit edilmiştir.

References

  • Alkan H., Cinar H., Oreshin S., 2020. Lake Van (southeastern Turkey) experiment: Receiver function analyses of lithospheric structure from teleseismic observations, Pure and Applied Geophysics 177, 3891-3909.
  • Arabasz W.J., Hill S.J., 1996. Applying Reasenberg’s cluster analysis algorithm to regional earthquake catalogs outside California (abstract), Seismological Research Letters 67(2), 30.
  • Bayrak E., Ozer C., Cakici H., Kocadagistan M.E., 2021. January 24, 2020 Sivrice (Turkey) earthquake (Mw6.8): Evaluation of Ground-Motion Prediction Equations and Engineering Seismology Studies, Turk Deprem Arastirma Dergisi 3(2), 125-148, https://doi.org/10.46464/tdad.1003057
  • Bayrak Y., Ozturk S., Cinar H., Kalafat D., Tsapanos T.M., Koravos G.Ch., Leventakis G.A., 2009. Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey, Engineering Geology 10, 200-210.
  • Biro Y., Siyahi B., Akbas B., 2020. The Spectral Decay Parameter κ (kappa) for the Near Site Events in Van Region, Turk Deprem Arastirma Dergisi 2(1), 1-13, https://doi.org/10.46464/tdad.727847
  • Bozkurt E., 2001. Neotectonics of Turkey-a synthesis, Geodinamica Acta 14, 3-30.
  • Console R., Montuori C., Murru M., 2000. Statistical assessment of seismicity patterns in Italy: Are they precursors of subsequent events?, Journal of Seismology 4, 435-449.
  • Cukur D., Krastel S., Tomonaga Y., Schmincke H.U., Sumita M., Meydan A.F., Cagatay M.N., Toker M., Kim S.P., Kong G.S., Horozal S., 2017. Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications, International Journal of Earth Sciences 106, 239-253.
  • Derode B., Madariaga R., Campos J., 2021. Seismic rate variations prior to the 2010 Maule, Chile Mw 8.8 giant megathrust earthquake, Nature 11, 2705.
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmaci H., Can T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16, 3229-3275.
  • Enescu B., Ito K., 2002. Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 Western Tottori earthquake, Earth Planets and Space 54, 847-859.
  • Frohlich C., Davis S., 1993. Teleseismic b-values: Or, much ado about 1.0, Journal of Geophysical Research 98(B1), 631-644.
  • Gutenberg R., Richter C.F., 1944. Frequency of earthquakes in California, Bulletin of the Seismological Society of America 34, 185-188.
  • Holliday J.R., Nanjo K.Z., Tiampo K.F., Rundle J.B., Turcotte D.L., 2005. Earthquake forecasting and its verification, Nonlinear Process in Geophysics 12, 965-977.
  • Holliday J.R., Rundle J.B., Tiampo K.F., Turcotte D.L., 2006. Using earthquake intensities to forecast earthquake occurrence time, Nonlinear Process in Geophysics 13, 585-593.
  • Holliday J.R., Chen C-C., Tiampo K.F., Rundle J.B., Turcotte D.L., Donnellan A., 2007. A RELM earthquake forecast based on Pattern Infformatics, Seismological Research Letters 78(1), 87-93.
  • Irmak T.S., Dogan B., Karakas A., 2012. Source mechanism of the 23 October 2011, Van (Turkey) earthquake (Mw=7.1) and aftershocks with its tectonic implications, Earth Planets Space 64, 991-1003.
  • Keilis-Borok V.I., 1996. Intermediate term earthquake prediction, The Proceedings of the National Academy of Sciences USA 93, 3748-3755.
  • Keskin M., 2003. Magma generation by slab steepening and breakoff beneath a subduction–accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysics Research Letters 30(24), 8046.
  • KRDAE-BDTİM, 2022. Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi Deprem Kataloğu, Erişim adresi: http://www.koeri.boun.edu.tr/sismo/zeqdb
  • Mizrahi L., Nandan S., Wiemer S., 2021. The effect of declustering on the size distribution of mainshocks. Seismological Research Letters 92(4), 2333-2342.
  • Nanjo K.Z., Rundle J.B., Holliday J.R., Turcotte D.L., 2006a. Pattern Informatics and its application for optimal forecasting of large earthquakes in Japan, Pure and Applied Geophysics 163, 2417-2432.
  • Nanjo K.Z., Holliday J.R., Chen C.-C., Rundle J.B., Turcotte D.L., 2006b. Application of modified pattern informatics method to forecasting the locations of future large earthquakes in the central Japan, Tectonophysics 424, 351-366.
  • Ozturk S., 2011. Characteristics of seismic activity in the western, central and eastern parts of the North Anatolian Fault Zone, Turkey: temporal and spatial analysis, Acta Geophysica 59, 209-238.
  • Ozturk S., 2018. Earthquake hazard potential in the Eastern Anatolian region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of Earth Sciences 12(1), 215-236.
  • Ozturk S., 2020. A study on the variations of recent seismicity in and around the Central Anatolian region of Turkey, Physics of the Earth and Planetary Interiors 301 (106453), 1-11.
  • Ozer C., Ozturk S., Pamuk E., 2022. Tectonic and structural characteristics of Erzurum and its surroundings (Eastern Turkey): a detailed comparison between different geophysical parameters, Turkish Journal of Earth Secinces 31(1), 85-108.
  • Öztürk S., 2009. An application of the earthquake hazard and aftershock probability evaluation methods to Turkey earthquakes. PhD Thesis, Karadeniz Technical University, Trabzon, Turkey (in Turkish with English abstract), pp 346.
  • Polat O., Gok E., Yılmaz D., 2008. Earthquake hazard of the Aegean extension region (West Turkey), Turkish Journal of Earth Sciences 17, 593-614.
  • Reasenberg P.A., 1985. Second-order moment of Central California seismicity, 1969-1982, Journal of Geophysical Research 90(B7), 5479-5495.
  • Reilinger R., McClusky S., Vernant P., Lawrence S., Ergintav S., Cakmak R., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research 111, B05411.
  • Rundle J.B., Tiampo K.F., Klein W., Martins J.S.S., 2002. Self-organization in leaky threshold systems: The influence of near-mean field Dynamics and its implications for earthquakes, neurobiology and forecasting, The Proceedings of the National Academy of Sciences USA 99 (Supplement 1), 2514-2521.
  • Scholz C.H., 2015. On the stress dependence of the earthquake b value, Geophysical Research Letters 42, 1399-1402.
  • Selcuk L., Selcuk A.S., Beyaz T., 2010. Probabilistic seismic hazard assessment for Lake Van basin, Turkey, Natural Hazards 54, 949-965.
  • Tiampo K.F., Rundle J.B., McGinnis S.A., Klein W., 2002. Pattern dynamics and forecast methods in seismically active regions, Pure and Applied Geophysics 159, 2429-2467.
  • Toker M., Pinar A., Hoskan N., 2021. An integrated critical approach to off-fault strike-slip motion triggered by the 2011 Van mainshock (Mw 7.1), Eastern Anatolia (Turkey): New stress field constraints on subcrustal deformation, Journal of Geodynamics 147 (101861), 1-25.
  • Utkucu M., Durmus H., Yalcin H., Budakoglu E., Isik E., 2013. Coulomb static stress changes before and after the 23 October 2011 Van, Eastern Turkey, earthquake (Mw=7.1): implications for the earthquake hazard mitigation, Natural Hazards and Earth System Sciences 13, 1-14.
  • Utsu T., 1971. Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1), Journal of the Faculty of Science, Hokkaido University Series VII (Geophysics) 3, 379-441.
  • Varotsos P., Alexopoulos K., 1984. Physical properties of the variations of the electric field of the earth preceding earthquakes. II. determination of epicenter and magnitude, Tectonophysics 110, 99-125.
  • Wiemer S., 2001. A software package to analyze seismicity: ZMAP, Seismological Research Letters 72(2), 373-382.
  • Wiemer S., Wyss M., 1994. Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes, Bulletin of the Seismological Society of America 84(3), 900-916.
  • Wiemer S., Wyss M., 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bulletin of the Seismological Society of America 90(3), 859-869.
  • Wyss M., Habermann R.E., 1988. Precursory seismic quiescence, Pure and Applied Geophysics 126(2–4), 319-332.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Serkan Öztürk 0000-0003-1322-5164

Hamdi Alkan 0000-0003-3912-7503

Publication Date December 13, 2022
Submission Date April 25, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Öztürk, S., & Alkan, H. (2022). Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme. Türk Deprem Araştırma Dergisi, 4(2), 191-209. https://doi.org/10.46464/tdad.1108730
AMA Öztürk S, Alkan H. Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme. TDAD. December 2022;4(2):191-209. doi:10.46464/tdad.1108730
Chicago Öztürk, Serkan, and Hamdi Alkan. “Van Gölü Ve Civarı (Türkiye) İçin Deprem Tahmini Ve Tehlikesi Üzerine İstatistiksel Bir Analiz Ve Değerlendirme”. Türk Deprem Araştırma Dergisi 4, no. 2 (December 2022): 191-209. https://doi.org/10.46464/tdad.1108730.
EndNote Öztürk S, Alkan H (December 1, 2022) Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme. Türk Deprem Araştırma Dergisi 4 2 191–209.
IEEE S. Öztürk and H. Alkan, “Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme”, TDAD, vol. 4, no. 2, pp. 191–209, 2022, doi: 10.46464/tdad.1108730.
ISNAD Öztürk, Serkan - Alkan, Hamdi. “Van Gölü Ve Civarı (Türkiye) İçin Deprem Tahmini Ve Tehlikesi Üzerine İstatistiksel Bir Analiz Ve Değerlendirme”. Türk Deprem Araştırma Dergisi 4/2 (December 2022), 191-209. https://doi.org/10.46464/tdad.1108730.
JAMA Öztürk S, Alkan H. Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme. TDAD. 2022;4:191–209.
MLA Öztürk, Serkan and Hamdi Alkan. “Van Gölü Ve Civarı (Türkiye) İçin Deprem Tahmini Ve Tehlikesi Üzerine İstatistiksel Bir Analiz Ve Değerlendirme”. Türk Deprem Araştırma Dergisi, vol. 4, no. 2, 2022, pp. 191-09, doi:10.46464/tdad.1108730.
Vancouver Öztürk S, Alkan H. Van Gölü ve Civarı (Türkiye) İçin Deprem Tahmini ve Tehlikesi Üzerine İstatistiksel Bir Analiz ve Değerlendirme. TDAD. 2022;4(2):191-209.

OPEN ACCESS AND CC LICENSE

Content of this journal is licensed under a Creative Commons Attribution 4.0 International Non-Commercial License





Flag Counter