Research Article
BibTex RIS Cite

Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri

Year 2021, Volume: 10 Issue: 1, 52 - 62, 25.06.2021
https://doi.org/10.46810/tdfd.805789

Abstract

Kuraklık stresi bitkisel üretimi etkileyen en önemli stres faktörlerindendir. Bu çalışma kuraklık stresinin olumsuz etkilerini azaltmada bakteri uygulamasının etkisini belirlemek amacıyla yapılmıştır. İklim odasında katı ortam kültüründe yapılan çalışmada Falcon domates çeşiti ve Tom-29 yerel domates genotipi kullanılmıştır. Bitkileri 16/8 saat aydınlık/karanlık, 25±2°C gündüz ve 20±2°C gece olan iklim odasında yetiştirilmiştir. Uygulamalar kontrol, kuraklık stresi, bakteri, kuraklık stresi+bakteri şeklinde planlanmıştır. Çalışma sonunda bitki boyu, bitki çapı, yaprak sayısı, koltuk sayısı, bitki yaş ağırlığı, gövde yaş ağırlığı, yaprak yaş ağırlığı, kök ağırlığı, yaprak alanı, yaprak oransal su içeriği, yaprak su potansiyeli, SPAD metre ölçümü gibi morfolojik ve fizyolojik parametreler incelenmiştir. Kontrol grubuna kıyasla, kuraklık stresi uygulamasında, Tom-29 genotipi incelendiğinde, bitki boyu (% 3,07), bitki çapı (%5,75), bitki yaş ağırlığı (%55,92), gövde yaş ağırlığı (%33,50), kök ağırlığı (%38,20) ve yaprak sayısı (%16,37), yüzde değişimdeki azalışın Falcon çeşitinden daha az olduğu belirlenmiştir. Falcon çeşitine kıyasla Tom-29 genotipinde bakteri uygulamasına göre kuraklık stresi+bakteri uygulamasında bitki boyu (%34,83), bitki yaş ağırlığı (%50,62), gövde yaş ağırlığı (%53,36), yaprak yaş ağırlığı (%51,43), koltuk sayısı (%31,55) ve turgor potansiyeli (%3,84) yüzde değişim azalışının daha düşük olduğu belirlenmiştir. Sonuç olarak kuraklık stresinin domates üzerindeki olumsuz etkisini azaltmada kullanılan yöntem ve uygulamaların etkisi belirlenmiştir.

References

  • [1] Akhoundnejad Y, Daşgan HY. Effect of different ırrigation levels on physiological performance of some drought tolerant melon (Cucumis melo L.) genotypes. App Eco Environ Res. 2019;17(4):9997-10012.
  • [2] Alp Y, Kabay T. Kuraklık stresinin yerli ve ticari domates çeşitlerinde bazı fizyolojik parametreler üzerine etkileri. YYÜ Tar Bil Derg. 2017;22 (2):86-96.
  • [3] Altuntaş O, Dasgan HY, Akhoundnejad Y, Kutsal IK. Does Sılıcon Increase The Tolerance Of A Sensıtıve Pepper Genotype To Salt Stress?. Acta Sci. Pol. Hortorum Cultus. 2020;19(2):87-96.
  • [4] Altunlu H. Aşılamanın domateste kuraklık stresine etkileri [doktora tezi]. İzmir: Ege Üniversitesi Fen Bilimleri Enstitüsü; 2011.
  • [5] Amira MS, Qados A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba L. J. Saudi Soc. Agric. Sci. 2011;10:7-15.
  • [6] Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron and Crop Sci. 2011a;97(3):177–185.
  • [7] Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011b;6(9):2026–2032.
  • [8] Ashraf M. Inducing drought tolerance in plants: some recent advances. Biotechnol Adv. 2010;28:169–183.
  • [9] Asraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007;59(2):206-216.
  • [10] Blum K, Lohmann B, Taute E. Angular distribution and polarisation of Auger electrons. J. Phys. B: At. Mol. Phys. 1986;19(22):3815.
  • [11] Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Pnas. 2004;101 (26):9909-9914.
  • [12] Casanovas E, Barassi C, Sueldo R. Azospirillum inoculation mitigates waters stress effect in maize seedlings. Cereal Res Comm. 2002;30:343–350.
  • [13] Castillo P, Escalante M, Gallardo M, Alemano S, Abdala G. Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant. 2013;35:2299–2309.
  • [14] Chenu C, Roberson EB. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol. Biochem. 1996;28(7):877–884.
  • [15] Creus CM, Sueldo RJ, Barassi CA. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot. 2004;82(2):273–281.
  • [16] Cui J, Shao G, Lu J, Keabetswe L, Hoogenboom G. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. agric. 2020;7(2):e20180390.
  • [17] Çakmakçı R. Stres kosullarında ACC deaminaze üretici bakteriler tarafından bitki gelişiminin teşvik edilmesi. Atatürk Üniv. Ziraat Fak. Derg. 2009;40(1):109-125.
  • [18] Daşgan HY, Kuşvuran Ş, Abak K, Sarı N. Screening and saving of local vegege tarımsal araştırma enstitüsübles for their resistance todrought and salinity. UNDP Project Final Report;2010.
  • [19] De Mezer M, Turska-Taraska A, Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T. Differential physiological and molecular response of barley genotypes to water deficit. Plant Physio Biochem. 2014;80:234–248.
  • [20] Dere S. Domateste besin özellikleri ve kalitenin kuraklığa dayanıklılıkla arttırılması [doktora tezi]. Adana: Çukurova Üniversitesi Fen Bilimleri Enstitüsü; 2019.
  • [21] Dere S, Daşgan HY. Effect of waterlogging on three different tomato genotypes. 2th International Mersin symposium, 2019. Mersin;2003.p.145-158.
  • [22]Dere S, Coban A, Akhoundnejad Y, Ozsoy S, Dasgan HY. Use of mycorrhiza to reduce mineral fertilizers in soilless melon (Cucumis melo L.) cultivation. Not Bot Horti Agrobo. 2019;47(4):1331-1336.
  • [23]Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ. Will modifying plant ethylene status improve plant productivity in water-limited environments?. 4th international crop science congress; 2004. Australia: Australian Society of Agronomy Inc; 2004. p. 510
  • [24] Dodd IC, Pe´rez-Alfocea F. Microbial amelioration of crops salinity stress. J Exp Bot. 2012;63:3415–3428.
  • [25] Earl H, Davis, R.F. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 2003;95(3):688-696
  • [26] Egilla JN, Davies Jr FT, Boutton TW. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica. 2005;43:135-140.
  • [27] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212.
  • [28] Flexas J, Medrano H. Drought inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot. 2002;89(2):183–189.
  • [29] Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria ımprove seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol. 2010;61(6):485–493.
  • [30] Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROSscavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 2013;32:245–258.
  • [31] Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41(2):109–117
  • [32] Güneri Bağcı E. Nohut çeşitlerinde kuraklıkga bağlı oksidatif stresin fizyolojik ve biyokimyasal parametrelerle belirlenmesi [doktora tezi]. Ankara: Ankara üniversitesi Fen Bilimleri Fakültesi; 2010.
  • [31] Heidari M, Golpayegani A. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J. Saudi Soc. Agric. Sci. 2012;11(1):57–61.
  • [32] Jump. Version 7.0, Statistical software, 2007.
  • [33] Khan SH, Khan A, Litaf U, Shah AS, Khan MA. Effect of drought stress on tomato cv. Bombino. J Food Process Technol. 2015;6(7):1-6.
  • [34]Kıran S, Kuşvuran Ş, Özkay F, Ellialtıoğlu ŞŞ. Domates, patlıcan ve kavun genotiplerinin kuraklığa dayanım durumlarını belirlemeye yönelik olarak incelenen özellikler arasındaki ilişkiler. Nevşehir bilim teknol. derg. 2015;4(2):9-9.
  • [35] Kıran S, Özkay F, Kuşvuran Ş, Ellialtıoğlu ŞŞ. Tuz stresine tolerans seviyesi farklı domates genotiplerinin kuraklık stresi koşullarında bazı özelliklerinde meydana gelen değişimler. Jafag.2014;31(3):41-48.
  • [36] Kohler J, Hernández JA, Fuensanta Caravaca F, Roldán A. Plant-growthpromoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in waterstressed plants. FPB. 2008;35(2):141-151.
  • [37] Lawlor DW, Cornic D. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002;25(2):275-294
  • [38] Leskovar DI, Cantliffe DJ (1992). Pepper seedling growth response to drought stress and exogenous abscisic acid. J Am Soc Hortıc Scı. 1992;117(3):389-393.
  • [39] Li Y, Li H, Li Y, Zhang S. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J. 2017;5(3):231–239.
  • [40] Lu GH, Ren DL, Wang XQ, Wu JK, Zhao MS. Evaluation on drought tolerance of maize hybrids in China. J. Maize Sci. 2010;3:20–24.
  • [41] Lucas García JA, Probanza A, Ramos B, Ruiz Palomıno M, Gutiérrez Mañero FJ. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie. 2004;24(4):169–176.
  • [42] Lucy M, Reed E, Glick BR. Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J G. 2004;86(1):1-25.
  • [43] Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Zocchi G. A drought resistance-promoting microbiome is selected by root system under desert farming. Plos. 2012;7(10):e48479.
  • [44] Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 2010;232(2):533–543.
  • [45] Marulanda A, Barea JM, Azcón R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul. 2009;28(2):115–124.
  • [46] Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA. Impact of osmotic stress on physiological and biochemical characteristics in droughtsusceptible and drought-resistant wheat genotypes. Acta Physiol. Plant. 2013;35(2):451–461.
  • [47] Mayak S, Tirosh T, Glick BR. Plant Growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Science. 2004;166(2):525-530.
  • [48] Mohawesh O. Utilizing deficit irrigation to enhance growth performance and water-use efficiency of eggplant in arid environments. J Agr Scı Tech-Iran. 2016;18(1):265- 276.
  • [49] Nam M. Patates çesitlerinin yüksek sıcaklık stresine toleranslarının büyüme ve verim parametreleri ile hücre zarı stabilitesi yöntemine göre 52 belirlenmesi [Yüksek Lisans Tezi). Hatay: Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü; 2010.
  • [50] Nangare DD, Singh Y, Kumar PS, Minhas PS. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric Water Manag. 2016;171:73-79.
  • [51] Ors S, Ekinci M. Kuraklık stresi ve bitki fizyolojisi. Derim. 2015;32(2);237-250.
  • [52] Özer H, Karadoğan T, Oral E. Bitkilerde su stresi ve dayanıklılık mekanizması. Atatürk Üniv. Ziraat Fak. Derg. 1997;28(3):488-495.
  • [53] Probanza A, Lucas JA, Acero N, Gutierrez-Man˜ero FS. (1996). The influence of native Rhizobacteria on European alder (Almus glutinosa (L). (Gaerth)) growth. Plant Soil. 1996;164:213–219
  • [54]Potts M. Desiccation tolerance of prokaryotes. Microbi Rev. 1994;58:755-805.
  • [55] Saba J, Moghaddam M, Ghassemi K, Nishabouri MR. Genetic properties of drought resistance indices. J Agr Scı Tech-Iran. 2001;3(1): 43–49.
  • [56] Sanchez FJ, Andres EF, Tenorio JL, Ayerbe L. 2004. Growth of Epicotyls, Turgor Maintenance and Osmotic Adjustment in Pea Plants (Pisum sativum L.) Subjectedto Water Stres. Field Crops Res. 2004;86(1):81-90.
  • [57] Sanchez-Rodriguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Ruiz JM. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science. 2010;178(1);30-40.
  • [58] Sandhya V, Ali Sk Z, Grover M, Reddy G, Venkateswarlu B. Alleviation of drought stress effects ın sunflower seedlings by the exopolysaccharides producing pseudomonas putida strain GAP-P45. Biol Fertil Soils. 2009;46(1):17–26.
  • [59] Sarig S, Okon Y, Blum A. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Shorgum bicolour roots. J. Plant Nutr. 1992;15:805-819.
  • [60]Schröder FG, Lieth JH. Irrigation control in hydroponics. In: Savvas D, Passam P (Eds) hydroponic production of vegetables and ornamentals. Greece: Embryo Publications;2002.p. 263-269.
  • [61] Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 2009;29(2):131–151.
  • [62] Shao GC, Deng S, Liu, N, Wang MH, She, DL. Fruit quality and yield of tomato as influenced by rain shelters and deficit irrigation. J Agr Scı Tech-Iran. 2015;17:691-704.
  • [63] Shi J, LeMaguer M. Lycopene in tomatoes:chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Technol. 2000;40(1):1–42.
  • [64]Taiz L, Zeiger E. Bitki fizyolojisi. Ankara: Palme Yayıncılık; 2006.
  • [65] Topcu S, Kirda C, Dasgan Y, Kaman H, Cetin M, Yazici A, Bacon MA. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur J Agron. 2007;26(1):64-70.
  • [66] Türkan İ, Bor M, Özdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought- sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 2005;168(1): 223-231.
  • [67] Ullah U, Ashraf M, Shahzad SM, Siddiqui AR, Piracha MA, Suleman M. Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ. 2016;35(1):65–75.
  • [68] Villalobos MA, Bartels D, Iturringa G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. J Plant Physiol. 2004;135(1):309–324.
  • [69] Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter‐Spira C, Novák O, Cardinale F. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 2016;212(4):954-963.
  • [70] Yasemin S, Köksal N, Özkaya A, Yener M. Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. J. Biol. Environ. Sci. 2017;11(32):59-66.
  • [71] Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica. 2014;52(2):193–202.
  • [72] Yılmaz, M. Topraksız biber yetiştiriciliğinde mikoriza ve bakteri biyogübreleri kullanılarak mineral gübrelerin azaltılması[yüksek lisans tezi]. Adana: Çukurova Üniversitesi Fen bilimleri Enstitüsü; 2020.
  • [73] Yuwono T, Handayani D, Soedarsono J. The role of osmotolerant rhizobacteria in rice growth different drought conditions. Aust J Agric Res. 2005;56(7):715-721.
  • [74] Zhang L, Zhang L, Sun J, Zhang Z, Ren H, Sui X. Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci Hortic. 2013;161:81–87.
  • [75] Zhanga, W., Xiea, Z., Zhanga, X., Langc, D., Zhang, X., 2019. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. J Plant Interact. 2019;14(1):580-589.
  • [76] Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Wu Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 2017;17(1):24.
  • [77] Weller DM, Thomashow LS. Current challenges in introducing benefical microoganisms into the rizosphere. ın: o0 gara f, dowling d, boesten n (eds) molecular ecology of rhizosphere microorganisms biotech and release of GMOs. New York:Wiley Digital Archives; 1994. p. 1-18
Year 2021, Volume: 10 Issue: 1, 52 - 62, 25.06.2021
https://doi.org/10.46810/tdfd.805789

Abstract

References

  • [1] Akhoundnejad Y, Daşgan HY. Effect of different ırrigation levels on physiological performance of some drought tolerant melon (Cucumis melo L.) genotypes. App Eco Environ Res. 2019;17(4):9997-10012.
  • [2] Alp Y, Kabay T. Kuraklık stresinin yerli ve ticari domates çeşitlerinde bazı fizyolojik parametreler üzerine etkileri. YYÜ Tar Bil Derg. 2017;22 (2):86-96.
  • [3] Altuntaş O, Dasgan HY, Akhoundnejad Y, Kutsal IK. Does Sılıcon Increase The Tolerance Of A Sensıtıve Pepper Genotype To Salt Stress?. Acta Sci. Pol. Hortorum Cultus. 2020;19(2):87-96.
  • [4] Altunlu H. Aşılamanın domateste kuraklık stresine etkileri [doktora tezi]. İzmir: Ege Üniversitesi Fen Bilimleri Enstitüsü; 2011.
  • [5] Amira MS, Qados A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba L. J. Saudi Soc. Agric. Sci. 2011;10:7-15.
  • [6] Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron and Crop Sci. 2011a;97(3):177–185.
  • [7] Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011b;6(9):2026–2032.
  • [8] Ashraf M. Inducing drought tolerance in plants: some recent advances. Biotechnol Adv. 2010;28:169–183.
  • [9] Asraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007;59(2):206-216.
  • [10] Blum K, Lohmann B, Taute E. Angular distribution and polarisation of Auger electrons. J. Phys. B: At. Mol. Phys. 1986;19(22):3815.
  • [11] Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Pnas. 2004;101 (26):9909-9914.
  • [12] Casanovas E, Barassi C, Sueldo R. Azospirillum inoculation mitigates waters stress effect in maize seedlings. Cereal Res Comm. 2002;30:343–350.
  • [13] Castillo P, Escalante M, Gallardo M, Alemano S, Abdala G. Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiol Plant. 2013;35:2299–2309.
  • [14] Chenu C, Roberson EB. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol. Biochem. 1996;28(7):877–884.
  • [15] Creus CM, Sueldo RJ, Barassi CA. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot. 2004;82(2):273–281.
  • [16] Cui J, Shao G, Lu J, Keabetswe L, Hoogenboom G. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. agric. 2020;7(2):e20180390.
  • [17] Çakmakçı R. Stres kosullarında ACC deaminaze üretici bakteriler tarafından bitki gelişiminin teşvik edilmesi. Atatürk Üniv. Ziraat Fak. Derg. 2009;40(1):109-125.
  • [18] Daşgan HY, Kuşvuran Ş, Abak K, Sarı N. Screening and saving of local vegege tarımsal araştırma enstitüsübles for their resistance todrought and salinity. UNDP Project Final Report;2010.
  • [19] De Mezer M, Turska-Taraska A, Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T. Differential physiological and molecular response of barley genotypes to water deficit. Plant Physio Biochem. 2014;80:234–248.
  • [20] Dere S. Domateste besin özellikleri ve kalitenin kuraklığa dayanıklılıkla arttırılması [doktora tezi]. Adana: Çukurova Üniversitesi Fen Bilimleri Enstitüsü; 2019.
  • [21] Dere S, Daşgan HY. Effect of waterlogging on three different tomato genotypes. 2th International Mersin symposium, 2019. Mersin;2003.p.145-158.
  • [22]Dere S, Coban A, Akhoundnejad Y, Ozsoy S, Dasgan HY. Use of mycorrhiza to reduce mineral fertilizers in soilless melon (Cucumis melo L.) cultivation. Not Bot Horti Agrobo. 2019;47(4):1331-1336.
  • [23]Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ. Will modifying plant ethylene status improve plant productivity in water-limited environments?. 4th international crop science congress; 2004. Australia: Australian Society of Agronomy Inc; 2004. p. 510
  • [24] Dodd IC, Pe´rez-Alfocea F. Microbial amelioration of crops salinity stress. J Exp Bot. 2012;63:3415–3428.
  • [25] Earl H, Davis, R.F. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 2003;95(3):688-696
  • [26] Egilla JN, Davies Jr FT, Boutton TW. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica. 2005;43:135-140.
  • [27] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212.
  • [28] Flexas J, Medrano H. Drought inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot. 2002;89(2):183–189.
  • [29] Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria ımprove seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol. 2010;61(6):485–493.
  • [30] Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROSscavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 2013;32:245–258.
  • [31] Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41(2):109–117
  • [32] Güneri Bağcı E. Nohut çeşitlerinde kuraklıkga bağlı oksidatif stresin fizyolojik ve biyokimyasal parametrelerle belirlenmesi [doktora tezi]. Ankara: Ankara üniversitesi Fen Bilimleri Fakültesi; 2010.
  • [31] Heidari M, Golpayegani A. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J. Saudi Soc. Agric. Sci. 2012;11(1):57–61.
  • [32] Jump. Version 7.0, Statistical software, 2007.
  • [33] Khan SH, Khan A, Litaf U, Shah AS, Khan MA. Effect of drought stress on tomato cv. Bombino. J Food Process Technol. 2015;6(7):1-6.
  • [34]Kıran S, Kuşvuran Ş, Özkay F, Ellialtıoğlu ŞŞ. Domates, patlıcan ve kavun genotiplerinin kuraklığa dayanım durumlarını belirlemeye yönelik olarak incelenen özellikler arasındaki ilişkiler. Nevşehir bilim teknol. derg. 2015;4(2):9-9.
  • [35] Kıran S, Özkay F, Kuşvuran Ş, Ellialtıoğlu ŞŞ. Tuz stresine tolerans seviyesi farklı domates genotiplerinin kuraklık stresi koşullarında bazı özelliklerinde meydana gelen değişimler. Jafag.2014;31(3):41-48.
  • [36] Kohler J, Hernández JA, Fuensanta Caravaca F, Roldán A. Plant-growthpromoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in waterstressed plants. FPB. 2008;35(2):141-151.
  • [37] Lawlor DW, Cornic D. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002;25(2):275-294
  • [38] Leskovar DI, Cantliffe DJ (1992). Pepper seedling growth response to drought stress and exogenous abscisic acid. J Am Soc Hortıc Scı. 1992;117(3):389-393.
  • [39] Li Y, Li H, Li Y, Zhang S. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J. 2017;5(3):231–239.
  • [40] Lu GH, Ren DL, Wang XQ, Wu JK, Zhao MS. Evaluation on drought tolerance of maize hybrids in China. J. Maize Sci. 2010;3:20–24.
  • [41] Lucas García JA, Probanza A, Ramos B, Ruiz Palomıno M, Gutiérrez Mañero FJ. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie. 2004;24(4):169–176.
  • [42] Lucy M, Reed E, Glick BR. Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J G. 2004;86(1):1-25.
  • [43] Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Zocchi G. A drought resistance-promoting microbiome is selected by root system under desert farming. Plos. 2012;7(10):e48479.
  • [44] Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 2010;232(2):533–543.
  • [45] Marulanda A, Barea JM, Azcón R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul. 2009;28(2):115–124.
  • [46] Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA. Impact of osmotic stress on physiological and biochemical characteristics in droughtsusceptible and drought-resistant wheat genotypes. Acta Physiol. Plant. 2013;35(2):451–461.
  • [47] Mayak S, Tirosh T, Glick BR. Plant Growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Science. 2004;166(2):525-530.
  • [48] Mohawesh O. Utilizing deficit irrigation to enhance growth performance and water-use efficiency of eggplant in arid environments. J Agr Scı Tech-Iran. 2016;18(1):265- 276.
  • [49] Nam M. Patates çesitlerinin yüksek sıcaklık stresine toleranslarının büyüme ve verim parametreleri ile hücre zarı stabilitesi yöntemine göre 52 belirlenmesi [Yüksek Lisans Tezi). Hatay: Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü; 2010.
  • [50] Nangare DD, Singh Y, Kumar PS, Minhas PS. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric Water Manag. 2016;171:73-79.
  • [51] Ors S, Ekinci M. Kuraklık stresi ve bitki fizyolojisi. Derim. 2015;32(2);237-250.
  • [52] Özer H, Karadoğan T, Oral E. Bitkilerde su stresi ve dayanıklılık mekanizması. Atatürk Üniv. Ziraat Fak. Derg. 1997;28(3):488-495.
  • [53] Probanza A, Lucas JA, Acero N, Gutierrez-Man˜ero FS. (1996). The influence of native Rhizobacteria on European alder (Almus glutinosa (L). (Gaerth)) growth. Plant Soil. 1996;164:213–219
  • [54]Potts M. Desiccation tolerance of prokaryotes. Microbi Rev. 1994;58:755-805.
  • [55] Saba J, Moghaddam M, Ghassemi K, Nishabouri MR. Genetic properties of drought resistance indices. J Agr Scı Tech-Iran. 2001;3(1): 43–49.
  • [56] Sanchez FJ, Andres EF, Tenorio JL, Ayerbe L. 2004. Growth of Epicotyls, Turgor Maintenance and Osmotic Adjustment in Pea Plants (Pisum sativum L.) Subjectedto Water Stres. Field Crops Res. 2004;86(1):81-90.
  • [57] Sanchez-Rodriguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Ruiz JM. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science. 2010;178(1);30-40.
  • [58] Sandhya V, Ali Sk Z, Grover M, Reddy G, Venkateswarlu B. Alleviation of drought stress effects ın sunflower seedlings by the exopolysaccharides producing pseudomonas putida strain GAP-P45. Biol Fertil Soils. 2009;46(1):17–26.
  • [59] Sarig S, Okon Y, Blum A. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Shorgum bicolour roots. J. Plant Nutr. 1992;15:805-819.
  • [60]Schröder FG, Lieth JH. Irrigation control in hydroponics. In: Savvas D, Passam P (Eds) hydroponic production of vegetables and ornamentals. Greece: Embryo Publications;2002.p. 263-269.
  • [61] Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 2009;29(2):131–151.
  • [62] Shao GC, Deng S, Liu, N, Wang MH, She, DL. Fruit quality and yield of tomato as influenced by rain shelters and deficit irrigation. J Agr Scı Tech-Iran. 2015;17:691-704.
  • [63] Shi J, LeMaguer M. Lycopene in tomatoes:chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Technol. 2000;40(1):1–42.
  • [64]Taiz L, Zeiger E. Bitki fizyolojisi. Ankara: Palme Yayıncılık; 2006.
  • [65] Topcu S, Kirda C, Dasgan Y, Kaman H, Cetin M, Yazici A, Bacon MA. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur J Agron. 2007;26(1):64-70.
  • [66] Türkan İ, Bor M, Özdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought- sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 2005;168(1): 223-231.
  • [67] Ullah U, Ashraf M, Shahzad SM, Siddiqui AR, Piracha MA, Suleman M. Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ. 2016;35(1):65–75.
  • [68] Villalobos MA, Bartels D, Iturringa G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. J Plant Physiol. 2004;135(1):309–324.
  • [69] Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter‐Spira C, Novák O, Cardinale F. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 2016;212(4):954-963.
  • [70] Yasemin S, Köksal N, Özkaya A, Yener M. Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. J. Biol. Environ. Sci. 2017;11(32):59-66.
  • [71] Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica. 2014;52(2):193–202.
  • [72] Yılmaz, M. Topraksız biber yetiştiriciliğinde mikoriza ve bakteri biyogübreleri kullanılarak mineral gübrelerin azaltılması[yüksek lisans tezi]. Adana: Çukurova Üniversitesi Fen bilimleri Enstitüsü; 2020.
  • [73] Yuwono T, Handayani D, Soedarsono J. The role of osmotolerant rhizobacteria in rice growth different drought conditions. Aust J Agric Res. 2005;56(7):715-721.
  • [74] Zhang L, Zhang L, Sun J, Zhang Z, Ren H, Sui X. Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci Hortic. 2013;161:81–87.
  • [75] Zhanga, W., Xiea, Z., Zhanga, X., Langc, D., Zhang, X., 2019. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. J Plant Interact. 2019;14(1):580-589.
  • [76] Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Wu Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 2017;17(1):24.
  • [77] Weller DM, Thomashow LS. Current challenges in introducing benefical microoganisms into the rizosphere. ın: o0 gara f, dowling d, boesten n (eds) molecular ecology of rhizosphere microorganisms biotech and release of GMOs. New York:Wiley Digital Archives; 1994. p. 1-18
There are 79 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Sultan Dere 0000-0001-5928-1060

Publication Date June 25, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Dere, S. (2021). Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri. Türk Doğa Ve Fen Dergisi, 10(1), 52-62. https://doi.org/10.46810/tdfd.805789
AMA Dere S. Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri. TJNS. June 2021;10(1):52-62. doi:10.46810/tdfd.805789
Chicago Dere, Sultan. “Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri”. Türk Doğa Ve Fen Dergisi 10, no. 1 (June 2021): 52-62. https://doi.org/10.46810/tdfd.805789.
EndNote Dere S (June 1, 2021) Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri. Türk Doğa ve Fen Dergisi 10 1 52–62.
IEEE S. Dere, “Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri”, TJNS, vol. 10, no. 1, pp. 52–62, 2021, doi: 10.46810/tdfd.805789.
ISNAD Dere, Sultan. “Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri”. Türk Doğa ve Fen Dergisi 10/1 (June 2021), 52-62. https://doi.org/10.46810/tdfd.805789.
JAMA Dere S. Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri. TJNS. 2021;10:52–62.
MLA Dere, Sultan. “Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 1, 2021, pp. 52-62, doi:10.46810/tdfd.805789.
Vancouver Dere S. Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri. TJNS. 2021;10(1):52-6.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.