Research Article
BibTex RIS Cite

Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques

Year 2022, Volume: 11 Issue: 2, 130 - 136, 29.06.2022
https://doi.org/10.46810/tdfd.1001501

Abstract

Classical solvent extraction (CSE), solvent maceration (SM), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) techniques were applied for the extraction of bioactive compounds of wild bilberry (Vaccinium myrtillus L.) fruit collected from the Eastern Black Sea Region in Turkey. Among these techniques, MAE is the most prominent in terms of total phenolics, total flavonoids and total anthocyanins yield in the extract. Total phenolics, total anthocyanin and total flavonoid content in MAE extract were determined as 1035 gallic acid/100 g fresh bilberry weight (fw), 963.16 mg cyanidin 3-glucoside equivalents/100 g fw and 150.21 mg quercetin equivalent/100 g fw, respectively. Seven different anthocyanin compounds were identified in bilberry extracts. The effect of extraction techniques on the anthocyanin’s distribution was revealed. Accordingly, malvidin-3-O-glucoside was found to be the most dominant anthocyanin in wild bilberry fruit.

Supporting Institution

Giresun University Scientific Research Projects Department

Project Number

FEN-BAP-A-230218-27

References

  • Campero EV, Gomez Marigliano AC, Barrionuevo MJ. Physical, Chemical and Microbiological Characteristics of Tucuman Blueberry. Research & Reviews: J. Eng. Technol. 2017; 6(1): 20-7
  • Babova O, Occhipinti A, Capuzzo A, Maffei ME. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J Supercrit Fluids. 2016; 107:358–63.
  • Heffels P, Weber F, Schieber A. Influence of Accelerated Solvent Extraction and Ultrasound-Assisted Extraction on the Anthocyanin Profile of Different Vaccinium Species in the Context of Statistical Models for Authentication. J. Agric. Food Chem. 2015; 63 (34): 7532-38.
  • Varo MA, Jacotet-Navarro M, Serratosa MP, Mérida J, Fabiano-Tixier AS, Bily A, Chemat F. Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium Myrtillus L.) Juice By-products. Waste Biomass Valorization. 2019; 10:1945–55.
  • Garzón GA, Narváez CE, Riedl KM, Schwartz S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010; 122, 980–86.
  • Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras A, Pacheco N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agron. 2017; 7(47): 1-19.
  • Routray W, Orsat V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind Crops Prod. 2014; 58: 36–45.
  • Slinkard K, Singleton VL. Total Phenol Analysis: Automation and Comparison with Manual Methods, Am J Enol Vitic. 1977; 28: 49-55.
  • AOAC. Official Methods of Analysis. 18th Edition, Association of Official Analytical Chemists, Gaithersburgs, MD. 2006.
  • Pekal A, Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014; 9: 1776-1782.
  • Kingston HM, Jassie LB. Introduction to Microwave Sample Preparation: Theory and practice. American Chemical Society, Washington, DC. 1988.
  • Jovančević M, Balijagić J, Menković N, Šavikin K, Zdunić G, Janković T, Dekić-Ivanković M. Analysis of Phenolic Compounds in Wild Populations of Bilberry (Vaccinium myrtillus L.) from Montenegro. J. Med. Plant Res. 2011; 5: 910–4.
  • Stanoeva JP, Stefova M, Andonovska KB, Vankova A, Stafilov T. Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int. J. Food Prop. 2017; 20: S863-S83.
  • Šavikin K, Zdunić G, Janković T, Tasić S, Menković N, Stević T, Đorđević B. Phenolic Content and Radical Scavenging Capacity of Berries and Related Jams from Certificated Area in Serbia. Plant Foods Hum. Nutr. 2009; 64: 212–7.
  • Šavikin K, Zdunić G, Janković T, Gođevac D, Stanojković T, Pljevljakušić, D. Berry Fruit Teas: Phenolic Composition and Cytotoxic Activity, Food Res. Int. 2014; 62: 677–83.
  • Colak N, Torun H, Gruz J, Strnad M, Hermosín-Gutiérrez I, Hayirlioglu-Ayaz S, Ayaz FA. Bog Bilberry Phenolics, Antioxidant Capacity and Nutrient Profile, Food Chem. 2016; 201: 339–49.
  • Taruscio TG, Barney DL, Exon J. Content and Profile of Flavanoid and Phenolic Acid Compounds in Conjunction with the Antioxidant Capacity for a Variety of Northwest Vaccinium Berries. J. Agric. Food Chem. 2004; 52: 3169–76.
  • Može Š, Polak T, Gašperlin L, Koron D, Vanzo A, Poklar Ulrih N, Abram V. Phenolics in Slovenian Bilberries (Vaccinium myrtillus L.) and Blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011; 59(13): 6998–7004.
  • Neamtu AA, Szoke-kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK et al. Bilberry (Vaccinium myrtillus L.) extracts comparative analysis regarding their phytonutrient profiles, antioxidant capacity along with the in vivo rescue effects tested on a drosophila melanogaster high-sugar diet model. Antioxidants. 2020; 9(11): 1–33.
  • Li C, Feng J, Huang WY, An XT. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing, J. Agric. Food Chem. 2013; 61(3), 523–31.
  • Okan OT, Deniz I, Yayli N, Şat IG, Öz M, Serdar G.H. Antioxidant activity, sugar content and phenolic profiling of blueberries cultivars: A comprehensive comparison, Not Bot Horti Agrobot Cluj. 2018; 46(2): 639–52.
  • Pop R, Ştefănut M, Căta A, Tănasie C, Medeleanu M. Ab initio study regarding the evaluation of the antioxidant character of cyanidin, delphinidin and malvidin, Open Chem. 2012; 10(1): 180-6.
  • Lee C, Han D, Kim B, Baek N. Baik BK. Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars. Int. J. Food Sci. 2013; 48: 984-91.
  • Huang W, Zhu Y, Li C, Sui Z, Min W. Effect of Blueberry Anthocyanins Malvidin and Glycosides on the Antioxidant Properties in Endothelial Cells, Oxid. Med. Cell. Longev. 2016; ID 1591803.
  • Chan CH, Yusoff R, Ngoh GC, Wai-Lee KF. Microwave-assisted extractions of active ingredients from plants, J. Chromatogr. A, 2011; 1218 (37): 6213-25.
  • Proestos C, Komaitis M. Application ofmicrowave-assisted extraction to the fast extraction of plant phenolic compounds. Lwt-Food Sci Technol. 2008; 41(4): 652–9.

Doğu Karadeniz Bölgesindeki Yabani Çalıçileği (Vaccinium Myrtillus L.) Meyvelerinde Biyoaktif Bileşiklerin Farklı Tekniklerle Ekstraksiyonu

Year 2022, Volume: 11 Issue: 2, 130 - 136, 29.06.2022
https://doi.org/10.46810/tdfd.1001501

Abstract

Türkiye'de Doğu Karadeniz Bölgesi'nden toplanan yabani çalıçileği (Vaccinium myrtillus L.) meyvesinin biyoaktif bileşiklerinin ekstraksiyonu için klasik solvent ekstraksiyonu (CSE), solvent maserasyonu (SM), ultrason destekli ekstraksiyon (UAE) ve mikrodalga destekli ekstraksiyon (MAE) teknikleri uygulandı. Bu teknikler arasında ekstrakttaki toplam fenolik, toplam flavonoid ve toplam antosiyanin verimi açısından en iyi tekniğin MAE olduğu görüldü. MAE ekstraktındaki toplam fenolikler, toplam antosiyanin ve toplam flavonoid içeriği sırasıyla 1035 gallik asit/100 g fw, 963.16 mg siyanidin 3-glukozit eşdeğeri/100 g fw ve 150.21 mg kersetin eşdeğeri/100 g fw olarak belirlendi. Yabani çalıçileği özlerinde yedi farklı antosiyanin bileşiği tanımlandı. Ekstraksiyon tekniklerinin antosiyanin dağılımı üzerindeki etkisi ortaya çıkarıldı. Buna göre, yabani çalıçileği meyvesinde en baskın antosiyaninin malvidin-3-O-glukozit olduğu belirlendi.

Project Number

FEN-BAP-A-230218-27

References

  • Campero EV, Gomez Marigliano AC, Barrionuevo MJ. Physical, Chemical and Microbiological Characteristics of Tucuman Blueberry. Research & Reviews: J. Eng. Technol. 2017; 6(1): 20-7
  • Babova O, Occhipinti A, Capuzzo A, Maffei ME. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J Supercrit Fluids. 2016; 107:358–63.
  • Heffels P, Weber F, Schieber A. Influence of Accelerated Solvent Extraction and Ultrasound-Assisted Extraction on the Anthocyanin Profile of Different Vaccinium Species in the Context of Statistical Models for Authentication. J. Agric. Food Chem. 2015; 63 (34): 7532-38.
  • Varo MA, Jacotet-Navarro M, Serratosa MP, Mérida J, Fabiano-Tixier AS, Bily A, Chemat F. Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium Myrtillus L.) Juice By-products. Waste Biomass Valorization. 2019; 10:1945–55.
  • Garzón GA, Narváez CE, Riedl KM, Schwartz S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010; 122, 980–86.
  • Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras A, Pacheco N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agron. 2017; 7(47): 1-19.
  • Routray W, Orsat V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind Crops Prod. 2014; 58: 36–45.
  • Slinkard K, Singleton VL. Total Phenol Analysis: Automation and Comparison with Manual Methods, Am J Enol Vitic. 1977; 28: 49-55.
  • AOAC. Official Methods of Analysis. 18th Edition, Association of Official Analytical Chemists, Gaithersburgs, MD. 2006.
  • Pekal A, Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014; 9: 1776-1782.
  • Kingston HM, Jassie LB. Introduction to Microwave Sample Preparation: Theory and practice. American Chemical Society, Washington, DC. 1988.
  • Jovančević M, Balijagić J, Menković N, Šavikin K, Zdunić G, Janković T, Dekić-Ivanković M. Analysis of Phenolic Compounds in Wild Populations of Bilberry (Vaccinium myrtillus L.) from Montenegro. J. Med. Plant Res. 2011; 5: 910–4.
  • Stanoeva JP, Stefova M, Andonovska KB, Vankova A, Stafilov T. Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int. J. Food Prop. 2017; 20: S863-S83.
  • Šavikin K, Zdunić G, Janković T, Tasić S, Menković N, Stević T, Đorđević B. Phenolic Content and Radical Scavenging Capacity of Berries and Related Jams from Certificated Area in Serbia. Plant Foods Hum. Nutr. 2009; 64: 212–7.
  • Šavikin K, Zdunić G, Janković T, Gođevac D, Stanojković T, Pljevljakušić, D. Berry Fruit Teas: Phenolic Composition and Cytotoxic Activity, Food Res. Int. 2014; 62: 677–83.
  • Colak N, Torun H, Gruz J, Strnad M, Hermosín-Gutiérrez I, Hayirlioglu-Ayaz S, Ayaz FA. Bog Bilberry Phenolics, Antioxidant Capacity and Nutrient Profile, Food Chem. 2016; 201: 339–49.
  • Taruscio TG, Barney DL, Exon J. Content and Profile of Flavanoid and Phenolic Acid Compounds in Conjunction with the Antioxidant Capacity for a Variety of Northwest Vaccinium Berries. J. Agric. Food Chem. 2004; 52: 3169–76.
  • Može Š, Polak T, Gašperlin L, Koron D, Vanzo A, Poklar Ulrih N, Abram V. Phenolics in Slovenian Bilberries (Vaccinium myrtillus L.) and Blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011; 59(13): 6998–7004.
  • Neamtu AA, Szoke-kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK et al. Bilberry (Vaccinium myrtillus L.) extracts comparative analysis regarding their phytonutrient profiles, antioxidant capacity along with the in vivo rescue effects tested on a drosophila melanogaster high-sugar diet model. Antioxidants. 2020; 9(11): 1–33.
  • Li C, Feng J, Huang WY, An XT. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing, J. Agric. Food Chem. 2013; 61(3), 523–31.
  • Okan OT, Deniz I, Yayli N, Şat IG, Öz M, Serdar G.H. Antioxidant activity, sugar content and phenolic profiling of blueberries cultivars: A comprehensive comparison, Not Bot Horti Agrobot Cluj. 2018; 46(2): 639–52.
  • Pop R, Ştefănut M, Căta A, Tănasie C, Medeleanu M. Ab initio study regarding the evaluation of the antioxidant character of cyanidin, delphinidin and malvidin, Open Chem. 2012; 10(1): 180-6.
  • Lee C, Han D, Kim B, Baek N. Baik BK. Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars. Int. J. Food Sci. 2013; 48: 984-91.
  • Huang W, Zhu Y, Li C, Sui Z, Min W. Effect of Blueberry Anthocyanins Malvidin and Glycosides on the Antioxidant Properties in Endothelial Cells, Oxid. Med. Cell. Longev. 2016; ID 1591803.
  • Chan CH, Yusoff R, Ngoh GC, Wai-Lee KF. Microwave-assisted extractions of active ingredients from plants, J. Chromatogr. A, 2011; 1218 (37): 6213-25.
  • Proestos C, Komaitis M. Application ofmicrowave-assisted extraction to the fast extraction of plant phenolic compounds. Lwt-Food Sci Technol. 2008; 41(4): 652–9.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Evren Altıok 0000-0002-6437-5990

Sibel Kacmaz 0000-0003-3642-4940

Duygu Altıok 0000-0002-8503-2145

Project Number FEN-BAP-A-230218-27
Early Pub Date June 29, 2022
Publication Date June 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Altıok, E., Kacmaz, S., & Altıok, D. (2022). Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques. Türk Doğa Ve Fen Dergisi, 11(2), 130-136. https://doi.org/10.46810/tdfd.1001501
AMA Altıok E, Kacmaz S, Altıok D. Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques. TJNS. June 2022;11(2):130-136. doi:10.46810/tdfd.1001501
Chicago Altıok, Evren, Sibel Kacmaz, and Duygu Altıok. “Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques”. Türk Doğa Ve Fen Dergisi 11, no. 2 (June 2022): 130-36. https://doi.org/10.46810/tdfd.1001501.
EndNote Altıok E, Kacmaz S, Altıok D (June 1, 2022) Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques. Türk Doğa ve Fen Dergisi 11 2 130–136.
IEEE E. Altıok, S. Kacmaz, and D. Altıok, “Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques”, TJNS, vol. 11, no. 2, pp. 130–136, 2022, doi: 10.46810/tdfd.1001501.
ISNAD Altıok, Evren et al. “Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques”. Türk Doğa ve Fen Dergisi 11/2 (June 2022), 130-136. https://doi.org/10.46810/tdfd.1001501.
JAMA Altıok E, Kacmaz S, Altıok D. Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques. TJNS. 2022;11:130–136.
MLA Altıok, Evren et al. “Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 2, 2022, pp. 130-6, doi:10.46810/tdfd.1001501.
Vancouver Altıok E, Kacmaz S, Altıok D. Extraction of Bioactive Compounds in Wild Bilberry (Vaccinium Myrtillus L.) in The Eastern Black Sea Region With Different Techniques. TJNS. 2022;11(2):130-6.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.