Research Article
BibTex RIS Cite

Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions

Year 2022, Volume: 11 Issue: 2, 70 - 75, 29.06.2022
https://doi.org/10.46810/tdfd.1036402

Abstract

Two calixarene-functionalized biopolymers (calixarene-functionalized chitosan and calixarene-functionalized cellulose) have been synthesized and duly characterized using FTIR, TGA and elemental analysis techniques. Furthermore, their anion extraction behaviors at various pH values have been evaluated toward dichromate and arsenate anions. Results indicated that calixarene-functionalized chitosan against dichromate ion exhibited higher extraction capability than calixarene-functionalized cellulose. Intriguingly, although a less extraction efficiency against dichromate anion was obtained by calixarene-functionalized cellulose, the arsenate anion extraction results showed that calixarene-functionalized cellulose is more effective ionophore than calixarene-functionalized chitosan.

References

  • [1] Chen R, Zhang Z, Feng Z, Lei Z, Li Y, Li M, Shimizu K, Sugiura N. Batch study of arsenate (V) adsorption using Akadama mud: Effect of water Mineralization. Applied Surface Science 2010; 256: 2961-7.
  • [2] Sayin S, Ozcan F, Yilmaz M. Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles. J. Hazard. Mater. 2010; 178: 312-9.
  • [3] Weerasundara L, Ok Y-S, Bundschuh J. Selective removal of arsenic in water: A critical review. Environ. Pollut. 2021; 268: 115668.
  • [4] Wei Y, Wei S, Liu C, Chen T, Tang Y, Ma J, Yin K, Luo S. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res. 2019; 167: 115107.
  • [5] Watson M, Nikic J, Tubic A, Isakovski MK, Solic M, Dalmacija B, Agbaba J. Repurposing spent filter sand from iron and manganese removal systems as an adsorbent for treating arsenic contaminated drinking water. Journal of Environmental Management 2022; 302: 114115.
  • [6] Talukder ME, Pervez MN, Jianming W, Gao Z, Stylios GK, Hassan MM, Song H, Naddeo V. Chitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solution. Journal of Environmental Chemical Engineering 2021; 9: 106693.
  • [7] WHO, 2011. WHO | WHO Guidelines for Drinking-Water Quality, fourth ed. World Health Organization, Geneva, ISBN 978-92-4-154995-0.
  • [8] Sayin S, Ozcan F, Yilmaz M. Two novel calixarene functionalized iron oxide magnetite nanoparticles as a platform for magnetic separation in the liquid–liquid/solid–liquid extraction of oxyanions. Materials Science and Engineering C 2013; 33: 2433-9.
  • [9] Basu D, Blackburn K, Harris B, Neal MW, Stoss FW. Health Assessment Document for Chromium. US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 1984.
  • [10] Jena SR, Choudhury J. 3D Metallo-organic coordination assembly-based anion-enriched supramolecular material for fast and efficient removal of Cr2O72-. Journal of Hazardous Materials 2021; 405: 124242.
  • [11] Junejo R, Jalbani NS, Memon S, Kaya S, Erkan S, Serdaroǧlu G, Palabiyik I M. Equilibrium, Thermodynamic, and Density Functional Theory Modeling Studies for the Removal of Dichromate Ions from Wastewater Using Calix[4]arene Modified Silica Resin. J. Chem. Eng. Data 2021; 66: 1, 379-88.
  • [12] Sayin S. Synthesis of new anthracene-substituted calix[4]triazacrown-5 as highly sensitive fluorescent chemosensor and extractant against hazardous dichromate anion. Luminesc. 2021; 36: 1716-24.
  • [13] Zhang F, Du N, Li H, song S, Hou W. Sorbent effect on the sorption of Cr(VI) on a Mg6AlFe- layered double hydroxide and its calcined product in aqueous solutions. Colloid Polym Sci 2015; 293: 1961-9.
  • [14] Fan L, Zhou B, Zhang S, Hu S, Mi X, Sun R, Wu Y. Adsorptive Removal of Low‑Concentration Cr(VI) in Aqueous Solution by Mg–Al Layered Double Oxides. Bulletin of Environmental Contamination and Toxicology 2021; 106: 134-45.
  • [15] Kozlowski CA, Walkowiak W. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Research 2002; 36: 4870-6.
  • [16] Nawaz R, Ali K, Ali N, Khaliq A. Removal of chromium(VI) from industrial effluents through supported liquid membrane using trioctylphosphine oxide as a carrier. J. Braz. Chem. Soc. 2016; 27: 209-20.
  • [17] Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers 2021; 251: 117000.
  • [18] Ganji F, Abdekhodaie MJ. Chitosan–g-PLGA copolymer as a thermosensitive membrane. Carbohydrate Polymers 2010; 80: 740-6.
  • [19] Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020; 21: 487.
  • [20] Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021; 33: 2000619.
  • [21] Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules 2008; 43: 401-14.
  • [22] Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers 2009; 76: 167-82.
  • [23] Ravi-Kumar MNV. A review of chitin, chitosan applications. Reactive and Functional Polymer 2000; 46: 1-27.
  • [24] Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localized cancer therapy. Journal of Controlled Release 2008; 126: 205-16.
  • [25] Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000; 74: 69-80.
  • [26] Li J, Zhang L-P, Peng F, Bian J, Yuan T-Q, Xu F, Sun R-C. Microwave-Assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 2009; 14: 3551-66.
  • [27] Sayin S, Doğan V. Synthesis and properties of novel magnetic nanoparticles grafted with nitropyridine-substituted calix[4]arene derivative as Cr6+ extractant. Turk J Chem 2015; 39: 130-8.
  • [28] Tekin M, Cevik E, Sayin S, Yildiz HB. Photocurrent and hydrogen production by overall water splitting based on polymeric composite Calix [n]arene/Cyanin Dye/IrO2 nanoparticle. International journal of hydrogen energy 2020; 45: 19869-79.
  • [29] Ramirez FdM, Serrano-Valero E, Varbanov S. Octaphosphinoylated para-tert-butylcalix[8]arene as an extracting agent for uranyl ions in an acidic nitrate medium: study of the extracted uranyl calixarene compound. Journal of Radioanalytical and Nuclear Chemistry 2020; 323: 651-62.
  • [30] Sayin S, Ozbek C, Okur S, Yilmaz M. Preparation of the ferrocene-substituted 1,3-distal p-tert -butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. Journal of Organometallic Chemistry 2014; 771: 9-13.
  • [31] Sayin S. Synthesis of New Quinoline-Conjugated Calixarene as a Fluorescent Sensor for Selective Determination of Cu2+ Ion. Journal of Fluorescence 2021; 31: 1143-51.
  • [32] Alizada M, Gül A, Oguz M, Kursunlu AN, Yilmaz M. Ion sensing of sister sensors based-on calix[4]arene in aqueous medium and their bioimaging applications. Dyes and Pigments 2021; 184: 108741.
  • [33] Jalbani NS, Solangi AR, Memon S, Junejo R, Bhatti AA, Yola ML, Tawalbeh M, Karimi-Maleh H. Synthesis of new functionalized Calix[4]arene modified silica resin for the adsorption of metal ions: Equilibrium, thermodynamic and kinetic modeling studies. Journal of Molecular Liquids 2021; 339: 116741.
  • [34] Ozyilmaz E, Ascioglu S, Yilmaz M. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. International Journal of Biological Macromolecules 2021; 175: 79-86.
  • [35] Gutsche CD, Nam KC. Calixarenes.22. synthesis, properties, and metal complexation of aminocalixarenes. J. Am. Chem. Soc. 1988; 110: 6153-62.
  • [36] Collins EM, McKervey MA, Madigan E, Moran MB, Owens M, Ferguson G, Harris SJ. Chemically modified calix[4]arenes. Regioslective synthesis of 1,3-(distal) derivatives and related compounds.x-ray crystal structure of a diphenol-dinitrile. J. Chem. Soc. Perkin Trans.1 1991; 12: 3137-42.
  • [37] Alekseeva EA, Bacherikov VA, Gren AI, Baukov YI. Synthesis of p-tert-Butylcalix[4]arene derivatives containing amino acid residues. Russian Journal of General Chemistry 2000; 70: 490-2.
  • [38] Ozyilmaz E, Sayin S. Preparation of New Calix[4]arene-Immobilized Biopolymers for Enhancing Catalytic Properties of Candida rugosa Lipase by Sol–Gel Encapsulation. Appl Biochem Biotechnol 2013; 170: 1871-84.
  • [39] Sayin S, Ozcan F, Yilmaz M. Preparation and Application of Calix[4]arene Derivatives Bearing Pyridinium Units-Grafted Magnetite Nanoparticles for Removal of Dichromate and Arsenate Anions. J. Macromol. Sci.,Part A: Pure and Appl. Chem. 2011; 48: 365-72.
  • [40] Sayin S, Yilmaz M. Synthesis of a new calixarene derivative and its immobilization onto magnetic nanoparticle surfaces for excellent extractants toward Cr(VI), As(V), and U(VI). J. Chem. Eng. Data. 2011; 56: 2020-9.
  • [41] Ozcan F, Ersoz M, Yilmaz M. Preparation and application of calix[4]arene-grafted magnetite nanoparticles for removal of dichromate anions. Materials Science and Engineering C 2009; 29: 2378-83.

İki Kaliks[4]aren-Fonksiyonlu Biyopolimerlerin Hazırlanması ve Cr(VI)/As(V) Anyonlarına Karşı Ekstraksiyon Yeteneklerinin İncelenmesi

Year 2022, Volume: 11 Issue: 2, 70 - 75, 29.06.2022
https://doi.org/10.46810/tdfd.1036402

Abstract

İki kaliksarene-fonksiyonlu biyopolimerler (kaliksaren-fonksiyonlu kitosan ve kaliksaren-fonksiyonlu selüloz) sentezlenmiş ve FTIR, TGA ve element analiz gibi teknikler kullanılarak uygun bir şekilde karakterize edilmişlerdir. Ayrıca, çeşitli pH lardaki anyon ekstraksiyon davranışları dikromat ve arsenat anyonlarına karşı incelenmiştir. Sonuçlar dikromat iyonuna karşı kaliksaren-fonksiyonlu kitosanın kaliksaren-fonksiyonlu selüloza göre daha büyük ekstraksiyon kabiliyetinin olduğunu gösterdi. İlginç bir şekilde, dikromat anyonuna karşı daha düşük bir ekstraksiyon verimliliği kaliksaren-fonksiyonlu selüloz ile elde edilmesine rağmen, arsenat anyon ektraksiyon sonuçları kaliksaren-fonksiyonlu selülozun kaliksaren-fonksiyonlu kitosana göre daha etkin iyonofor olduğunu gösterdi.

References

  • [1] Chen R, Zhang Z, Feng Z, Lei Z, Li Y, Li M, Shimizu K, Sugiura N. Batch study of arsenate (V) adsorption using Akadama mud: Effect of water Mineralization. Applied Surface Science 2010; 256: 2961-7.
  • [2] Sayin S, Ozcan F, Yilmaz M. Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles. J. Hazard. Mater. 2010; 178: 312-9.
  • [3] Weerasundara L, Ok Y-S, Bundschuh J. Selective removal of arsenic in water: A critical review. Environ. Pollut. 2021; 268: 115668.
  • [4] Wei Y, Wei S, Liu C, Chen T, Tang Y, Ma J, Yin K, Luo S. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res. 2019; 167: 115107.
  • [5] Watson M, Nikic J, Tubic A, Isakovski MK, Solic M, Dalmacija B, Agbaba J. Repurposing spent filter sand from iron and manganese removal systems as an adsorbent for treating arsenic contaminated drinking water. Journal of Environmental Management 2022; 302: 114115.
  • [6] Talukder ME, Pervez MN, Jianming W, Gao Z, Stylios GK, Hassan MM, Song H, Naddeo V. Chitosan-functionalized sodium alginate-based electrospun nanofiber membrane for As (III) removal from aqueous solution. Journal of Environmental Chemical Engineering 2021; 9: 106693.
  • [7] WHO, 2011. WHO | WHO Guidelines for Drinking-Water Quality, fourth ed. World Health Organization, Geneva, ISBN 978-92-4-154995-0.
  • [8] Sayin S, Ozcan F, Yilmaz M. Two novel calixarene functionalized iron oxide magnetite nanoparticles as a platform for magnetic separation in the liquid–liquid/solid–liquid extraction of oxyanions. Materials Science and Engineering C 2013; 33: 2433-9.
  • [9] Basu D, Blackburn K, Harris B, Neal MW, Stoss FW. Health Assessment Document for Chromium. US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 1984.
  • [10] Jena SR, Choudhury J. 3D Metallo-organic coordination assembly-based anion-enriched supramolecular material for fast and efficient removal of Cr2O72-. Journal of Hazardous Materials 2021; 405: 124242.
  • [11] Junejo R, Jalbani NS, Memon S, Kaya S, Erkan S, Serdaroǧlu G, Palabiyik I M. Equilibrium, Thermodynamic, and Density Functional Theory Modeling Studies for the Removal of Dichromate Ions from Wastewater Using Calix[4]arene Modified Silica Resin. J. Chem. Eng. Data 2021; 66: 1, 379-88.
  • [12] Sayin S. Synthesis of new anthracene-substituted calix[4]triazacrown-5 as highly sensitive fluorescent chemosensor and extractant against hazardous dichromate anion. Luminesc. 2021; 36: 1716-24.
  • [13] Zhang F, Du N, Li H, song S, Hou W. Sorbent effect on the sorption of Cr(VI) on a Mg6AlFe- layered double hydroxide and its calcined product in aqueous solutions. Colloid Polym Sci 2015; 293: 1961-9.
  • [14] Fan L, Zhou B, Zhang S, Hu S, Mi X, Sun R, Wu Y. Adsorptive Removal of Low‑Concentration Cr(VI) in Aqueous Solution by Mg–Al Layered Double Oxides. Bulletin of Environmental Contamination and Toxicology 2021; 106: 134-45.
  • [15] Kozlowski CA, Walkowiak W. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Research 2002; 36: 4870-6.
  • [16] Nawaz R, Ali K, Ali N, Khaliq A. Removal of chromium(VI) from industrial effluents through supported liquid membrane using trioctylphosphine oxide as a carrier. J. Braz. Chem. Soc. 2016; 27: 209-20.
  • [17] Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha KL. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers 2021; 251: 117000.
  • [18] Ganji F, Abdekhodaie MJ. Chitosan–g-PLGA copolymer as a thermosensitive membrane. Carbohydrate Polymers 2010; 80: 740-6.
  • [19] Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020; 21: 487.
  • [20] Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021; 33: 2000619.
  • [21] Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules 2008; 43: 401-14.
  • [22] Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers 2009; 76: 167-82.
  • [23] Ravi-Kumar MNV. A review of chitin, chitosan applications. Reactive and Functional Polymer 2000; 46: 1-27.
  • [24] Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localized cancer therapy. Journal of Controlled Release 2008; 126: 205-16.
  • [25] Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000; 74: 69-80.
  • [26] Li J, Zhang L-P, Peng F, Bian J, Yuan T-Q, Xu F, Sun R-C. Microwave-Assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 2009; 14: 3551-66.
  • [27] Sayin S, Doğan V. Synthesis and properties of novel magnetic nanoparticles grafted with nitropyridine-substituted calix[4]arene derivative as Cr6+ extractant. Turk J Chem 2015; 39: 130-8.
  • [28] Tekin M, Cevik E, Sayin S, Yildiz HB. Photocurrent and hydrogen production by overall water splitting based on polymeric composite Calix [n]arene/Cyanin Dye/IrO2 nanoparticle. International journal of hydrogen energy 2020; 45: 19869-79.
  • [29] Ramirez FdM, Serrano-Valero E, Varbanov S. Octaphosphinoylated para-tert-butylcalix[8]arene as an extracting agent for uranyl ions in an acidic nitrate medium: study of the extracted uranyl calixarene compound. Journal of Radioanalytical and Nuclear Chemistry 2020; 323: 651-62.
  • [30] Sayin S, Ozbek C, Okur S, Yilmaz M. Preparation of the ferrocene-substituted 1,3-distal p-tert -butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. Journal of Organometallic Chemistry 2014; 771: 9-13.
  • [31] Sayin S. Synthesis of New Quinoline-Conjugated Calixarene as a Fluorescent Sensor for Selective Determination of Cu2+ Ion. Journal of Fluorescence 2021; 31: 1143-51.
  • [32] Alizada M, Gül A, Oguz M, Kursunlu AN, Yilmaz M. Ion sensing of sister sensors based-on calix[4]arene in aqueous medium and their bioimaging applications. Dyes and Pigments 2021; 184: 108741.
  • [33] Jalbani NS, Solangi AR, Memon S, Junejo R, Bhatti AA, Yola ML, Tawalbeh M, Karimi-Maleh H. Synthesis of new functionalized Calix[4]arene modified silica resin for the adsorption of metal ions: Equilibrium, thermodynamic and kinetic modeling studies. Journal of Molecular Liquids 2021; 339: 116741.
  • [34] Ozyilmaz E, Ascioglu S, Yilmaz M. Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. International Journal of Biological Macromolecules 2021; 175: 79-86.
  • [35] Gutsche CD, Nam KC. Calixarenes.22. synthesis, properties, and metal complexation of aminocalixarenes. J. Am. Chem. Soc. 1988; 110: 6153-62.
  • [36] Collins EM, McKervey MA, Madigan E, Moran MB, Owens M, Ferguson G, Harris SJ. Chemically modified calix[4]arenes. Regioslective synthesis of 1,3-(distal) derivatives and related compounds.x-ray crystal structure of a diphenol-dinitrile. J. Chem. Soc. Perkin Trans.1 1991; 12: 3137-42.
  • [37] Alekseeva EA, Bacherikov VA, Gren AI, Baukov YI. Synthesis of p-tert-Butylcalix[4]arene derivatives containing amino acid residues. Russian Journal of General Chemistry 2000; 70: 490-2.
  • [38] Ozyilmaz E, Sayin S. Preparation of New Calix[4]arene-Immobilized Biopolymers for Enhancing Catalytic Properties of Candida rugosa Lipase by Sol–Gel Encapsulation. Appl Biochem Biotechnol 2013; 170: 1871-84.
  • [39] Sayin S, Ozcan F, Yilmaz M. Preparation and Application of Calix[4]arene Derivatives Bearing Pyridinium Units-Grafted Magnetite Nanoparticles for Removal of Dichromate and Arsenate Anions. J. Macromol. Sci.,Part A: Pure and Appl. Chem. 2011; 48: 365-72.
  • [40] Sayin S, Yilmaz M. Synthesis of a new calixarene derivative and its immobilization onto magnetic nanoparticle surfaces for excellent extractants toward Cr(VI), As(V), and U(VI). J. Chem. Eng. Data. 2011; 56: 2020-9.
  • [41] Ozcan F, Ersoz M, Yilmaz M. Preparation and application of calix[4]arene-grafted magnetite nanoparticles for removal of dichromate anions. Materials Science and Engineering C 2009; 29: 2378-83.
There are 41 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Serkan Sayın 0000-0003-0518-3208

Early Pub Date June 29, 2022
Publication Date June 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Sayın, S. (2022). Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions. Türk Doğa Ve Fen Dergisi, 11(2), 70-75. https://doi.org/10.46810/tdfd.1036402
AMA Sayın S. Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions. TJNS. June 2022;11(2):70-75. doi:10.46810/tdfd.1036402
Chicago Sayın, Serkan. “Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions”. Türk Doğa Ve Fen Dergisi 11, no. 2 (June 2022): 70-75. https://doi.org/10.46810/tdfd.1036402.
EndNote Sayın S (June 1, 2022) Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions. Türk Doğa ve Fen Dergisi 11 2 70–75.
IEEE S. Sayın, “Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions”, TJNS, vol. 11, no. 2, pp. 70–75, 2022, doi: 10.46810/tdfd.1036402.
ISNAD Sayın, Serkan. “Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions”. Türk Doğa ve Fen Dergisi 11/2 (June 2022), 70-75. https://doi.org/10.46810/tdfd.1036402.
JAMA Sayın S. Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions. TJNS. 2022;11:70–75.
MLA Sayın, Serkan. “Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 2, 2022, pp. 70-75, doi:10.46810/tdfd.1036402.
Vancouver Sayın S. Preparation of Two Calix[4]arene-Functionalized Biopolymers and Evaluations of Their Extraction Abilities Against Cr(VI)/As(V) Anions. TJNS. 2022;11(2):70-5.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.