Research Article
BibTex RIS Cite

H2 Gas Response of NiO Thin Film at Different Gas Concentrations

Year 2024, Issue: 1, 77 - 81, 01.10.2024
https://doi.org/10.46810/tdfd.1425425

Abstract

Interest in H2 energy, which is one of the alternative energy sources that can meet the energy needs of the increasing world population, is increasing day by day. However, dangerous properties of H2 gas such as high flammability and explosiveness require sensitive detection of this gas. For this purpose, intensive research is being carried out on the detection of H2 gas with high response values at low gas concentrations. In this study, the structural, morphological and H2 gas sensing characteristics of NiO thin film, which grown on quartz substrate by RF sputtering. XRD results of the produced film revealed that the NiO film has a polycrystalline cubic structure with (101), (012), (110) and (113) diffraction planes. The lattice constant of the film was obtained as 4.226 nm, which differed by 1.274% from the theoretical values presented in the literature. From the special scanning XPS spectrum of the Ni element, the presence of peaks corresponding to Ni+2, Ni+3 and NiOOH on the film surface was detected. SEM images revealed the existence of a homogeneous structure on the film surface consisting of structures with grain sizes of 10-20 nm. Current changes obtained at 100, 500 and 1000 ppm H2 concentrations at 300°C showed that the produced film was sensitive to H2 gas and the current value increased as the ppm value increased. For 1000 ppm H2, the response value was 11.49, the response and recovery times were 239 and 286 seconds, respectively. Gas sensor measurements have also shown that the NiO film produced may have p-type conductivity.

References

  • Li Z, Yao Z, Haidry AA, et al. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy 2018; 43: 21114–21132.
  • Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical 2017; 267: 242–261.
  • Barbosa MS, Suman PH, Kim JJ, et al. Gas sensor properties of Ag- and Pd-decorated SnO micro-disks to NO2, H2 and CO: Catalyst enhanced sensor response and selectivity. Sensors and Actuators B: Chemical 2017; 239: 253–261.
  • Moon WJ, Yu JH, Choi GM. The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor. Sensors and Actuators B: Chemical 2002; 87: 464–470.
  • Ceviz Şakar B. Influence of the Cu doping on the physical and H2 gas sensing properties of TiO2. International Journal of Hydrogen Energy 2023; S0360319923051005.
  • Mirzaei A, Kim J-H, Kim HW, et al. Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview. Applied Sciences 2019; 9: 1775.
  • Steinebach H, Kannan S, Rieth L, et al. H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sensors and Actuators B: Chemical 2010; 151: 162–168.
  • Varghese B, Reddy MV, Yanwu Z, et al. Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery. Chem Mater 2008; 20: 3360–3367.
  • Zhang Y, Wang S, Chen L, et al. Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer. Organic Electronics 2017; 44: 189–197.
  • Tsai S-Y, Hon M-H, Lu Y-M. Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors. Solid-State Electronics 2011; 63: 37–41.
  • Purushothaman KK, Muralidharan G. Nanostructured NiO based all solid state electrochromic device. J Sol-Gel Sci Technol 2008; 46: 190–194.
  • Du D, Hu Z, Liu Y, et al. Preparation and characterization of flower-like microspheres of nano-NiO as electrode material for supercapacitor. Journal of Alloys and Compounds 2014; 589: 82–87.
  • Bonomo M. Synthesis and characterization of NiO nanostructures: a review. J Nanopart Res 2018; 20: 222.
  • Stamataki M, Tsamakis D, Brilis N, et al. Hydrogen gas sensors based on PLD grown NiO thin film structures. phys stat sol (a) 2008; 205: 2064–2068.
  • Soleimanpour AM, Hou Y, Jayatissa AH. Evolution of hydrogen gas sensing properties of sol–gel derived nickel oxide thin film. Sensors and Actuators B: Chemical 2013; 182: 125–133.
  • Predanocy M, Hotový I, Čaplovičová M. Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Applied Surface Science 2017; 395: 208–213.

NiO ince filmin farklı gaz konsantrasyonlarında H2 gazı tepkisi

Year 2024, Issue: 1, 77 - 81, 01.10.2024
https://doi.org/10.46810/tdfd.1425425

Abstract

Artan dünya nüfusunun enerji ihtiyacını karşılayabilecek alternatif enerji kaynaklarından biri olan H2 enerjisine olan ilgi her geçen gün artmaktadır. Ancak H2 gazının yüksek yanıcılık ve patlayıcılık gibi tehlikeli özellikleri bu gazın hassas bir şekilde tespit edilmesini gerektirmektedir. Bu amaçla düşük gaz konsantrasyonlarında yüksek tepki değerlerine sahip H2 gazının tespiti üzerine yoğun araştırmalar yürütülmektedir. Bu çalışmada RF sıçratma yöntemiyle kuvars alttaş üzerinde büyütülen NiO ince filmin yapısal, morfolojik ve H2 gazını algılama özellikleri incelenmiştir. Üretilen filmin XRD sonuçları, NiO filminin (101), (012), (110) ve (113) kırınım düzlemlerine sahip çok kristalli kübik bir yapıya sahip olduğunu ortaya çıkardı. Filmin örgü sabiti 4,226 nm olarak elde edildi ve bu değer literatürde sunulan teorik değerlerden %1,274 farklılık gösterdi. Ni elementinin özel taramalı XPS spektrumundan film yüzeyinde Ni+2, Ni+3 ve NiOOH'ye karşılık gelen piklerin varlığı tespit edildi. SEM görüntüleri, film yüzeyinde tane boyutları 10-20 nm olan yapılardan oluşan homojen bir yapının varlığını ortaya çıkardı. 300°C'de 100, 500 ve 1000 ppm H2 konsantrasyonlarında elde edilen akım değişimleri, üretilen filmin H2 gazına duyarlı olduğunu ve ppm değeri arttıkça akım değerinin arttığını göstermiştir. 1000 ppm H2 için yanıt değeri 11,49, yanıt ve iyileşme süreleri sırasıyla 239 ve 286 saniyeydi. Gaz sensörü ölçümleri ayrıca üretilen NiO filmin p tipi iletkenliğe sahip olabileceğini de göstermiştir.

References

  • Li Z, Yao Z, Haidry AA, et al. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy 2018; 43: 21114–21132.
  • Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical 2017; 267: 242–261.
  • Barbosa MS, Suman PH, Kim JJ, et al. Gas sensor properties of Ag- and Pd-decorated SnO micro-disks to NO2, H2 and CO: Catalyst enhanced sensor response and selectivity. Sensors and Actuators B: Chemical 2017; 239: 253–261.
  • Moon WJ, Yu JH, Choi GM. The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor. Sensors and Actuators B: Chemical 2002; 87: 464–470.
  • Ceviz Şakar B. Influence of the Cu doping on the physical and H2 gas sensing properties of TiO2. International Journal of Hydrogen Energy 2023; S0360319923051005.
  • Mirzaei A, Kim J-H, Kim HW, et al. Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview. Applied Sciences 2019; 9: 1775.
  • Steinebach H, Kannan S, Rieth L, et al. H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sensors and Actuators B: Chemical 2010; 151: 162–168.
  • Varghese B, Reddy MV, Yanwu Z, et al. Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery. Chem Mater 2008; 20: 3360–3367.
  • Zhang Y, Wang S, Chen L, et al. Solution-processed quantum dot light-emitting diodes based on NiO nanocrystals hole injection layer. Organic Electronics 2017; 44: 189–197.
  • Tsai S-Y, Hon M-H, Lu Y-M. Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors. Solid-State Electronics 2011; 63: 37–41.
  • Purushothaman KK, Muralidharan G. Nanostructured NiO based all solid state electrochromic device. J Sol-Gel Sci Technol 2008; 46: 190–194.
  • Du D, Hu Z, Liu Y, et al. Preparation and characterization of flower-like microspheres of nano-NiO as electrode material for supercapacitor. Journal of Alloys and Compounds 2014; 589: 82–87.
  • Bonomo M. Synthesis and characterization of NiO nanostructures: a review. J Nanopart Res 2018; 20: 222.
  • Stamataki M, Tsamakis D, Brilis N, et al. Hydrogen gas sensors based on PLD grown NiO thin film structures. phys stat sol (a) 2008; 205: 2064–2068.
  • Soleimanpour AM, Hou Y, Jayatissa AH. Evolution of hydrogen gas sensing properties of sol–gel derived nickel oxide thin film. Sensors and Actuators B: Chemical 2013; 182: 125–133.
  • Predanocy M, Hotový I, Čaplovičová M. Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Applied Surface Science 2017; 395: 208–213.
There are 16 citations in total.

Details

Primary Language English
Subjects Surface Properties of Condensed Matter
Journal Section Articles
Authors

Betül Ceviz Şakar 0000-0003-3298-2793

Publication Date October 1, 2024
Submission Date January 25, 2024
Acceptance Date April 24, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Ceviz Şakar, B. (2024). H2 Gas Response of NiO Thin Film at Different Gas Concentrations. Türk Doğa Ve Fen Dergisi(1), 77-81. https://doi.org/10.46810/tdfd.1425425
AMA Ceviz Şakar B. H2 Gas Response of NiO Thin Film at Different Gas Concentrations. TJNS. October 2024;(1):77-81. doi:10.46810/tdfd.1425425
Chicago Ceviz Şakar, Betül. “H2 Gas Response of NiO Thin Film at Different Gas Concentrations”. Türk Doğa Ve Fen Dergisi, no. 1 (October 2024): 77-81. https://doi.org/10.46810/tdfd.1425425.
EndNote Ceviz Şakar B (October 1, 2024) H2 Gas Response of NiO Thin Film at Different Gas Concentrations. Türk Doğa ve Fen Dergisi 1 77–81.
IEEE B. Ceviz Şakar, “H2 Gas Response of NiO Thin Film at Different Gas Concentrations”, TJNS, no. 1, pp. 77–81, October 2024, doi: 10.46810/tdfd.1425425.
ISNAD Ceviz Şakar, Betül. “H2 Gas Response of NiO Thin Film at Different Gas Concentrations”. Türk Doğa ve Fen Dergisi 1 (October 2024), 77-81. https://doi.org/10.46810/tdfd.1425425.
JAMA Ceviz Şakar B. H2 Gas Response of NiO Thin Film at Different Gas Concentrations. TJNS. 2024;:77–81.
MLA Ceviz Şakar, Betül. “H2 Gas Response of NiO Thin Film at Different Gas Concentrations”. Türk Doğa Ve Fen Dergisi, no. 1, 2024, pp. 77-81, doi:10.46810/tdfd.1425425.
Vancouver Ceviz Şakar B. H2 Gas Response of NiO Thin Film at Different Gas Concentrations. TJNS. 2024(1):77-81.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.