Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 4, 33 - 40, 30.12.2024
https://doi.org/10.46810/tdfd.1468641

Abstract

References

  • Arslan K, West A. Product submanifolds with point-wise 3-planar normal sections. Glasgow Mathematical Journal. 1995; 37(1):73–81.
  • Arslan K, Özgür C. Curves and surfaces of AW (k) type. In Geometry and Topology of SubmanifoldsIX. 1999; 21–26.
  • Özgür C, Gezgin F. On some curves of AW(k)-type. Differential Geometry Dynamical Systems. 2005; 7:74.
  • Kılıç B, Arslan K. On curves and surfaces of AW(k)-type. Journal of the Institute of Science and Technology of Balıkesir University. 2004; 6(1):52-61.
  • Kişi İ, Öztürk G. Bishop Çatısına Göre AW (k)-Tipinden Eğriler. Afyon Kocatepe University Journal of Science and Engineering. 2019; 19(3):620-625.
  • Külahcı M, Öğrenmiş AO, Ergüt M. New characterizations of curves in the Galilean space G^3. International Journal of Physical and Mathematical Sciences. 2010; 1(1).
  • Sun J, Pei D. Null Cartan Bertrand curves of AW (k)-type in Minkowski 4-space. Physics Letters A. 2012; 376(33):2230-2233.
  • Gür S, Şenyurt S. Frenet vectors and geodesic curvatures of spheric indicators of Salkowski curve in E^3. Hadronic Journal. 2010; 33(5):485.
  • Hacisalihoğlu HH. Differential geometry. Ankara University Faculty of Science Press. Ankara; 2000.
  • Şenyurt S, Çalışkan A. Smarandache curves of Mannheim curve couple according to Frenet frame. Mathematical Sciences and Applications E-Notes. 2017; 5(1):122-136.
  • Do Carmo MP. Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications; 2016.
  • Bishop RL. There is more than one way to frame a curve. The American Mathematical Monthly. 1975; 82(3):246–251.
  • Yılmaz S, Turgut M. A new version of Bishop frame and an application to spherical images. Journal of Mathematical Analysis and Applications. 2010; 371(2):764-776.
  • Damar E, Yüksel N, Vanlı AT. The ruled surfaces according to type-2 Bishop frame in E^3. In International Mathematical Forum 2017; 12(3):133-143.
  • Damar E, Yüksel N, Karacan MK. Ruled surfaces according to parallel trasport frame in E^3. Mathematical Combinatorics.2020; 20.
  • Yüksel N. The ruled surfaces according to Bishop frame in Minkowski 3-space. In Abstract and Applied Analysis.2013; (2013): 810640
  • Hord RA. Torsion at an inflection point of a space curve. The American Mathematical Monthly.1972; 79(4):371-374.
  • Sasai T. The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations. Tohoku Mathematical Journal, Second Series.1984; 36(1):17-24.
  • Sasai T. Geometry of analytic space curves with singularities and regular singularities of differential equations. Funkcial. Ekvac.1987; 30, 283-303.
  • Bükçü B, Karacan MK. On the modified orthogonal frame with curvature and torsion in 3-Space. Mathematical Sciences and Applications E-Notes. 2016; 4(1):184-188.
  • Bükçü B, Karacan MK. Spherical curves with modified orthogonal frame. Journal of New Results in Science.2016; 5(10):60-68.
  • Gür S, Bektaş M. On the modified orthogonal frames of the non-unit speed curves in Euclidean Space E^3. Turkish Journal of Science.2022; 7(2):58-74.
  • Lone MS, Es H, Karacan MK, Bükçü B. On some curves with modified orthogonal frame in Euclidean 3-space. Iranian Journal of Science and Technology, Transactions A: Science.2019; 43:1905-1916.
  • Uddin S, Stankovi´c MS, Iqbal M, Yadav SK, Aslam M. Slant helices in Minkowski 3-space E_1^3 with Sasai’s modified frame fields. Filomat.2022; 36(1):151-164.
  • Yüksel N, Karacan MK, Demirkıran T. Spherical curves with modified orthogonal frame with torsion. Turkish Journal of Science.2022; 7(3):177-184.
  • Yüksel N, Ogras N. Canal surfaces with modified orthogonal frame in Minkowski 3-Space. Acta Universitatis Apulensis Mathematics-Informatics.2022;70.
  • Gür Mazlum S, Şenyurt S, Bektaş, M. Salkowski curves and their modified orthogonal frames in E3. Journal of New theory. 2022; 40, 12-26.
  • Arslan K, Çelik Y, Hacısalihoglu HH. On harmonic curvatures of Frenet curve. Commum. Fac. Sci. Univ. Ank. Series A1.2000; 49:15-23.
  • Izumiya S, Takeuchi N. New special curves and developable surfaces. Turkish Journal of Mathematics.2004; 28(2):153-164.

AW(k)-Type Curves in Modified Orthogonal Frame

Year 2024, Volume: 13 Issue: 4, 33 - 40, 30.12.2024
https://doi.org/10.46810/tdfd.1468641

Abstract

The goal of this article is to examine AW(k)-type curves in Euclidean 3- space according to a modified orthogonal frame with the non-zero curvature. Firstly, the relations between the curvatures for AW(k)-type curves in modified orthogonal frame are given. Also, harmonic curvatures of AW(k)-type curves according to this frame are obtained. The results are illustrated on examples. Finally, slant helices are analysed for the modified orthogonal frame and some relations are obtained for the curvatures of the curve to be of AW(1) and AW(2) type in case the curve be a slant helix.

References

  • Arslan K, West A. Product submanifolds with point-wise 3-planar normal sections. Glasgow Mathematical Journal. 1995; 37(1):73–81.
  • Arslan K, Özgür C. Curves and surfaces of AW (k) type. In Geometry and Topology of SubmanifoldsIX. 1999; 21–26.
  • Özgür C, Gezgin F. On some curves of AW(k)-type. Differential Geometry Dynamical Systems. 2005; 7:74.
  • Kılıç B, Arslan K. On curves and surfaces of AW(k)-type. Journal of the Institute of Science and Technology of Balıkesir University. 2004; 6(1):52-61.
  • Kişi İ, Öztürk G. Bishop Çatısına Göre AW (k)-Tipinden Eğriler. Afyon Kocatepe University Journal of Science and Engineering. 2019; 19(3):620-625.
  • Külahcı M, Öğrenmiş AO, Ergüt M. New characterizations of curves in the Galilean space G^3. International Journal of Physical and Mathematical Sciences. 2010; 1(1).
  • Sun J, Pei D. Null Cartan Bertrand curves of AW (k)-type in Minkowski 4-space. Physics Letters A. 2012; 376(33):2230-2233.
  • Gür S, Şenyurt S. Frenet vectors and geodesic curvatures of spheric indicators of Salkowski curve in E^3. Hadronic Journal. 2010; 33(5):485.
  • Hacisalihoğlu HH. Differential geometry. Ankara University Faculty of Science Press. Ankara; 2000.
  • Şenyurt S, Çalışkan A. Smarandache curves of Mannheim curve couple according to Frenet frame. Mathematical Sciences and Applications E-Notes. 2017; 5(1):122-136.
  • Do Carmo MP. Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications; 2016.
  • Bishop RL. There is more than one way to frame a curve. The American Mathematical Monthly. 1975; 82(3):246–251.
  • Yılmaz S, Turgut M. A new version of Bishop frame and an application to spherical images. Journal of Mathematical Analysis and Applications. 2010; 371(2):764-776.
  • Damar E, Yüksel N, Vanlı AT. The ruled surfaces according to type-2 Bishop frame in E^3. In International Mathematical Forum 2017; 12(3):133-143.
  • Damar E, Yüksel N, Karacan MK. Ruled surfaces according to parallel trasport frame in E^3. Mathematical Combinatorics.2020; 20.
  • Yüksel N. The ruled surfaces according to Bishop frame in Minkowski 3-space. In Abstract and Applied Analysis.2013; (2013): 810640
  • Hord RA. Torsion at an inflection point of a space curve. The American Mathematical Monthly.1972; 79(4):371-374.
  • Sasai T. The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations. Tohoku Mathematical Journal, Second Series.1984; 36(1):17-24.
  • Sasai T. Geometry of analytic space curves with singularities and regular singularities of differential equations. Funkcial. Ekvac.1987; 30, 283-303.
  • Bükçü B, Karacan MK. On the modified orthogonal frame with curvature and torsion in 3-Space. Mathematical Sciences and Applications E-Notes. 2016; 4(1):184-188.
  • Bükçü B, Karacan MK. Spherical curves with modified orthogonal frame. Journal of New Results in Science.2016; 5(10):60-68.
  • Gür S, Bektaş M. On the modified orthogonal frames of the non-unit speed curves in Euclidean Space E^3. Turkish Journal of Science.2022; 7(2):58-74.
  • Lone MS, Es H, Karacan MK, Bükçü B. On some curves with modified orthogonal frame in Euclidean 3-space. Iranian Journal of Science and Technology, Transactions A: Science.2019; 43:1905-1916.
  • Uddin S, Stankovi´c MS, Iqbal M, Yadav SK, Aslam M. Slant helices in Minkowski 3-space E_1^3 with Sasai’s modified frame fields. Filomat.2022; 36(1):151-164.
  • Yüksel N, Karacan MK, Demirkıran T. Spherical curves with modified orthogonal frame with torsion. Turkish Journal of Science.2022; 7(3):177-184.
  • Yüksel N, Ogras N. Canal surfaces with modified orthogonal frame in Minkowski 3-Space. Acta Universitatis Apulensis Mathematics-Informatics.2022;70.
  • Gür Mazlum S, Şenyurt S, Bektaş, M. Salkowski curves and their modified orthogonal frames in E3. Journal of New theory. 2022; 40, 12-26.
  • Arslan K, Çelik Y, Hacısalihoglu HH. On harmonic curvatures of Frenet curve. Commum. Fac. Sci. Univ. Ank. Series A1.2000; 49:15-23.
  • Izumiya S, Takeuchi N. New special curves and developable surfaces. Turkish Journal of Mathematics.2004; 28(2):153-164.
There are 29 citations in total.

Details

Primary Language English
Subjects Algebraic Structures in Mathematical Physics
Journal Section Articles
Authors

Esra Damar 0000-0002-0743-8545

Burçin Saltık Baek 0000-0001-5174-6484

Nurdan Oğraş 0000-0002-5539-4890

Nural Yüksel 0000-0003-3360-5148

Publication Date December 30, 2024
Submission Date April 16, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Damar, E., Saltık Baek, B., Oğraş, N., Yüksel, N. (2024). AW(k)-Type Curves in Modified Orthogonal Frame. Türk Doğa Ve Fen Dergisi, 13(4), 33-40. https://doi.org/10.46810/tdfd.1468641
AMA Damar E, Saltık Baek B, Oğraş N, Yüksel N. AW(k)-Type Curves in Modified Orthogonal Frame. TJNS. December 2024;13(4):33-40. doi:10.46810/tdfd.1468641
Chicago Damar, Esra, Burçin Saltık Baek, Nurdan Oğraş, and Nural Yüksel. “AW(k)-Type Curves in Modified Orthogonal Frame”. Türk Doğa Ve Fen Dergisi 13, no. 4 (December 2024): 33-40. https://doi.org/10.46810/tdfd.1468641.
EndNote Damar E, Saltık Baek B, Oğraş N, Yüksel N (December 1, 2024) AW(k)-Type Curves in Modified Orthogonal Frame. Türk Doğa ve Fen Dergisi 13 4 33–40.
IEEE E. Damar, B. Saltık Baek, N. Oğraş, and N. Yüksel, “AW(k)-Type Curves in Modified Orthogonal Frame”, TJNS, vol. 13, no. 4, pp. 33–40, 2024, doi: 10.46810/tdfd.1468641.
ISNAD Damar, Esra et al. “AW(k)-Type Curves in Modified Orthogonal Frame”. Türk Doğa ve Fen Dergisi 13/4 (December 2024), 33-40. https://doi.org/10.46810/tdfd.1468641.
JAMA Damar E, Saltık Baek B, Oğraş N, Yüksel N. AW(k)-Type Curves in Modified Orthogonal Frame. TJNS. 2024;13:33–40.
MLA Damar, Esra et al. “AW(k)-Type Curves in Modified Orthogonal Frame”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 4, 2024, pp. 33-40, doi:10.46810/tdfd.1468641.
Vancouver Damar E, Saltık Baek B, Oğraş N, Yüksel N. AW(k)-Type Curves in Modified Orthogonal Frame. TJNS. 2024;13(4):33-40.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.