Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 4, 58 - 65, 30.12.2024
https://doi.org/10.46810/tdfd.1501490

Abstract

Thanks

We are greatly thankful to Khaled M. Elattar for his valuable guidance.

References

  • Şahin Ö, Baytar O, Kutluay S, Ekinci A. Potential of nickel oxide catalyst from banana peel extract via green synthesis method in both photocatalytic reduction of methylene blue and generation of hydrogen from sodium borohydride hydrolysis. Journal of Photochemistry and Photobiology A: Chemistry. 2024;448:115301.
  • Onat E. Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride. Synthetic Metals. 2024;306:117621.
  • Li Q, Wang F, Zhou X, Chen J, Tang C, Zhang L. Synergistical photo-thermal-catalysis of Zn2GeO4:xFe3+ for H2 evolution in NaBH4 hydrolysis reaction. Catalysis communications. 2021;156:106321.
  • Abdelhamid HN. A review on hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2021;46(1):726-65.
  • Prasad D, Patil KN, Sandhya N, Chaitra CR, Bhanushali JT, Samal AK, et al. Highly efficient hydrogen production by hydrolysis of NaBH4 using eminently competent recyclable Fe2O3 decorated oxidized MWCNTs robust catalyst. Applied Surface Science. 2019;489:538-51.
  • Zou Y, Yin Y, Gao Y, Xiang C, Chu H, Qiu S, et al. Chitosan-mediated Co–Ce–B nanoparticles for catalyzing the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2018;43(10):4912-21.
  • Kılınç D, Şahin Ö. Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy. 2019;44(34):18858-65.
  • Wei Y, Meng W, Wang Y, Gao Y, Qi K, Zhang K. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts. International Journal of Hydrogen Energy. 2017;42(9):6072-9.
  • Wang L, Li Z, Zhang Y, Zhang T, Xie G. Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co–Ni–W–P/γ-Al2O3 as catalysts. Journal of Alloys and Compounds. 2017;702:649-58.
  • Lin K-YA, Chang H-A. Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic imidazolate framework. Chemical Engineering Journal. 2016;296:243-51.
  • Chou C-C, Hsieh C-H, Chen B-H. Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts. Energy. 2015;90:1973-82.
  • Aman D, Alkahlawy AA, Zaki T. Hydrolysis of NaBH4 using ZVI/Fe2(MoO4)3 nanocatalyst. International Journal of Hydrogen Energy. 2018;43(39):18289-95.
  • Kim C, Lee SS, Li W, Fortner JD. Towards optimizing cobalt based metal oxide nanocrystals for hydrogen generation via NaBH4 hydrolysis. Applied Catalysis A: General. 2020;589:117303.
  • Guo J, Hou Y, Li B, Liu Y. Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2018;43(32):15245-54.
  • Kılınç D, Şahin Ö. Performance of Zn-Schiff Base complex catalyst in NaBH4 hydrolysis reaction. International Journal of Hydrogen Energy. 2020;45(60):34783-92.
  • Boro B, Boruah JS, Devi C, Alemtoshi, Gogoi B, Bharali P, et al. A novel route to fabricate ZnO nanoparticles using Xanthium indicum ethanolic leaf extract: Green nanosynthesis perspective towards photocatalytic and biological applications. Journal of Molecular Structure. 2024;1300:137227.
  • Naiel B, Fawzy M, Halmy MWA, Mahmoud AED. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports. 2022;12(1):20370.
  • Goswami S, Bishnoi A, Tank D, Patel P, Chahar M, Khaturia S, Modi N, Khalid M, Alam MW, Kumar Yadav V, Alreshidi MA, Yadav KK. Recent trends in the synthesis, characterization and commercial applications of zinc oxide nanoparticles- a review. Inorganica Chimica Acta. 2024;573:122350.
  • Bakranova D, Nagel D. ZnO for Photoelectrochemical Hydrogen Generation. Clean Technologies. 2023;5(4):1248-68.
  • Gadewar M, Prashanth GK, Ravindra Babu M, Dileep MS, Prashanth PA, Rao S, Mahadevaswamy M, Kumar Ghosh M, Singh N, Mandotra SK, Chauhan A, Rustagi S, Yogi R, Chinnam S, Ali B, Ercisli S, Orhan E. Unlocking nature's potential: Green synthesis of ZnO nanoparticles and their multifaceted applications – A concise overview. Journal of Saudi Chemical Society. 2024;28(1):101774.
  • Zhou X-Q, Hayat Z, Zhang D-D, Li M-Y, Hu S, Wu Q, Cao Y-F, Yuan Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes. 2023;11(4):1193.
  • Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin’s Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules. 2020;10(11):1469.
  • Badmanaban R, Dhananjoy S, Dhrubo JS, Arpita B, Supradip M, Susmita B. Turmeric: A holistic Solution for Biochemical malfunction. Research Journal of Pharmacy and Technology. 2021; 14(10):5540-0.
  • Hani U, Shivakumar HG. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Current Drug Delivery. 2014;11(6):792-804.
  • Ipar VS, Dsouza A, Devarajan PV. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. European Journal of Drug Metabolism and Pharmacokinetics. 2019;44(4):459-80.
  • Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in Pharmacology. 2020;11:01021.
  • Samar S, Kumar A, Kumar P. Green synthesis of ZnO nano-crystals using Chenopodium album L. Leaf extract, their characterizations and antibacterial activities. Materials Science and Engineering: B. 2024;299:117005.
  • Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology. 2013;11(4):338-78.
  • Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J. A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron. 2008;64(35):8089-94.
  • Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. International Journal of Molecular Sciences. 2023;24(10).
  • Kawano S-i, Inohana Y, Hashi Y, Lin J-M. Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry. Chinese Chemical Letters. 2013;24(8):685-7.
  • Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. International Journal of Molecular Sciences. 2021;22(13):7094.
  • Song Z, Timothy A. Kelf, Washington H. Sanchez, Michael S. Roberts, Jaro Rička, Martin Frenz, et al. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical Optics Express. 2011;2(12):3321-33.
  • Singh S, Gade JV, Verma DK, Elyor B, Jain B. Exploring ZnO nanoparticles: UV–visible analysis and different size estimation methods. Optical Materials. 2024;152:115422.
  • Singh DK, Pandey DK, Yadav RR, Singh D. A study of nanosized zinc oxide and its nanofluid. Prama. 2012;78(5):759-66.
  • Ateş M. Nanoparçacıkların Ölçme ve İnceleme Teknikleri. Turkish Journal of Scientific Reviews. 2018;11(1):63-9.
  • Marsalek R. Particle Size and Zeta Potential of ZnO. APCBEE Procedia. 2014;9:13-7.
  • Günay K, Leblebici Z, Koca FD. Çinko Nanopartiküllerinin (ZnO NP) Biyosentezi, Karakterizasyonu ve Anti- Bakteriyel Etkisinin İncelenmesi. Nevşehir Bilim Teknoloji Dergisi. 2021;10(1):56-66.
  • Lee JK, Ann H-h, Yi Y, Lee KW, Uhm S, Lee J. A stable Ni–B catalyst in hydrogen generation via NaBH4 hydrolysis. Catalysis Communications. 2011;16(1):120-3.
  • Tang M, Xia F, Gao C, Qiu H. Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2016;41(30):13058-68.
  • Kim J-H, Kim K-T, Kang Y-M, Kim H-S, Song M-S, Lee Y-J, Lee PS, Lee J-Y. Study on degradation of filamentary Ni catalyst on hydrolysis of sodium borohydride. Journal of Alloys and Compounds. 2004;379(1):222-7.
  • Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Jeng M-S, Tsau F. Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. International Journal of Hydrogen Energy. 2009;34(5):2153-63.
  • Zhang F, Hou C, Zhang Q, Wang H, Li Y. Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Materials Chemistry and Physics. 2012;135(2):826-31.
  • Wang F, Luo Y, Wang Y, Zhu H. The preparation and performance of a novel spherical spider web-like structure RuNi / Ni foam catalyst for NaBH4 methanolysis. International Journal of Hydrogen Energy. 2019;44(26):13185-94.
  • Hung T-F, Kuo H-C, Tsai C-W, Chen HM, Liu R-S, Weng B-J, Lee J-F. An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride. Journal of Materials Chemistry. 2011;21(32):11754-9.

Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis

Year 2024, Volume: 13 Issue: 4, 58 - 65, 30.12.2024
https://doi.org/10.46810/tdfd.1501490

Abstract

This study was conducted to investigate the catalytic effects of ZnO, prepared using ethanolic turmeric extract, on the hydrolysis reaction of NaBH4. The generated ZnO particles were examined using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). Furthermore, Ultraviolet spectroscopy (UV) analysis and zeta potential measurements were conducted for the ZnO nanoparticles. The results demonstrated that the green synthesized ZnO nanoparticles exhibited effective catalytic behavior in the hydrolysis of NaBH4.

References

  • Şahin Ö, Baytar O, Kutluay S, Ekinci A. Potential of nickel oxide catalyst from banana peel extract via green synthesis method in both photocatalytic reduction of methylene blue and generation of hydrogen from sodium borohydride hydrolysis. Journal of Photochemistry and Photobiology A: Chemistry. 2024;448:115301.
  • Onat E. Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride. Synthetic Metals. 2024;306:117621.
  • Li Q, Wang F, Zhou X, Chen J, Tang C, Zhang L. Synergistical photo-thermal-catalysis of Zn2GeO4:xFe3+ for H2 evolution in NaBH4 hydrolysis reaction. Catalysis communications. 2021;156:106321.
  • Abdelhamid HN. A review on hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2021;46(1):726-65.
  • Prasad D, Patil KN, Sandhya N, Chaitra CR, Bhanushali JT, Samal AK, et al. Highly efficient hydrogen production by hydrolysis of NaBH4 using eminently competent recyclable Fe2O3 decorated oxidized MWCNTs robust catalyst. Applied Surface Science. 2019;489:538-51.
  • Zou Y, Yin Y, Gao Y, Xiang C, Chu H, Qiu S, et al. Chitosan-mediated Co–Ce–B nanoparticles for catalyzing the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2018;43(10):4912-21.
  • Kılınç D, Şahin Ö. Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy. 2019;44(34):18858-65.
  • Wei Y, Meng W, Wang Y, Gao Y, Qi K, Zhang K. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts. International Journal of Hydrogen Energy. 2017;42(9):6072-9.
  • Wang L, Li Z, Zhang Y, Zhang T, Xie G. Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co–Ni–W–P/γ-Al2O3 as catalysts. Journal of Alloys and Compounds. 2017;702:649-58.
  • Lin K-YA, Chang H-A. Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic imidazolate framework. Chemical Engineering Journal. 2016;296:243-51.
  • Chou C-C, Hsieh C-H, Chen B-H. Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts. Energy. 2015;90:1973-82.
  • Aman D, Alkahlawy AA, Zaki T. Hydrolysis of NaBH4 using ZVI/Fe2(MoO4)3 nanocatalyst. International Journal of Hydrogen Energy. 2018;43(39):18289-95.
  • Kim C, Lee SS, Li W, Fortner JD. Towards optimizing cobalt based metal oxide nanocrystals for hydrogen generation via NaBH4 hydrolysis. Applied Catalysis A: General. 2020;589:117303.
  • Guo J, Hou Y, Li B, Liu Y. Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2018;43(32):15245-54.
  • Kılınç D, Şahin Ö. Performance of Zn-Schiff Base complex catalyst in NaBH4 hydrolysis reaction. International Journal of Hydrogen Energy. 2020;45(60):34783-92.
  • Boro B, Boruah JS, Devi C, Alemtoshi, Gogoi B, Bharali P, et al. A novel route to fabricate ZnO nanoparticles using Xanthium indicum ethanolic leaf extract: Green nanosynthesis perspective towards photocatalytic and biological applications. Journal of Molecular Structure. 2024;1300:137227.
  • Naiel B, Fawzy M, Halmy MWA, Mahmoud AED. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports. 2022;12(1):20370.
  • Goswami S, Bishnoi A, Tank D, Patel P, Chahar M, Khaturia S, Modi N, Khalid M, Alam MW, Kumar Yadav V, Alreshidi MA, Yadav KK. Recent trends in the synthesis, characterization and commercial applications of zinc oxide nanoparticles- a review. Inorganica Chimica Acta. 2024;573:122350.
  • Bakranova D, Nagel D. ZnO for Photoelectrochemical Hydrogen Generation. Clean Technologies. 2023;5(4):1248-68.
  • Gadewar M, Prashanth GK, Ravindra Babu M, Dileep MS, Prashanth PA, Rao S, Mahadevaswamy M, Kumar Ghosh M, Singh N, Mandotra SK, Chauhan A, Rustagi S, Yogi R, Chinnam S, Ali B, Ercisli S, Orhan E. Unlocking nature's potential: Green synthesis of ZnO nanoparticles and their multifaceted applications – A concise overview. Journal of Saudi Chemical Society. 2024;28(1):101774.
  • Zhou X-Q, Hayat Z, Zhang D-D, Li M-Y, Hu S, Wu Q, Cao Y-F, Yuan Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes. 2023;11(4):1193.
  • Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin’s Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules. 2020;10(11):1469.
  • Badmanaban R, Dhananjoy S, Dhrubo JS, Arpita B, Supradip M, Susmita B. Turmeric: A holistic Solution for Biochemical malfunction. Research Journal of Pharmacy and Technology. 2021; 14(10):5540-0.
  • Hani U, Shivakumar HG. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Current Drug Delivery. 2014;11(6):792-804.
  • Ipar VS, Dsouza A, Devarajan PV. Enhancing Curcumin Oral Bioavailability Through Nanoformulations. European Journal of Drug Metabolism and Pharmacokinetics. 2019;44(4):459-80.
  • Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in Pharmacology. 2020;11:01021.
  • Samar S, Kumar A, Kumar P. Green synthesis of ZnO nano-crystals using Chenopodium album L. Leaf extract, their characterizations and antibacterial activities. Materials Science and Engineering: B. 2024;299:117005.
  • Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology. 2013;11(4):338-78.
  • Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J. A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron. 2008;64(35):8089-94.
  • Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. International Journal of Molecular Sciences. 2023;24(10).
  • Kawano S-i, Inohana Y, Hashi Y, Lin J-M. Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry. Chinese Chemical Letters. 2013;24(8):685-7.
  • Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. International Journal of Molecular Sciences. 2021;22(13):7094.
  • Song Z, Timothy A. Kelf, Washington H. Sanchez, Michael S. Roberts, Jaro Rička, Martin Frenz, et al. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical Optics Express. 2011;2(12):3321-33.
  • Singh S, Gade JV, Verma DK, Elyor B, Jain B. Exploring ZnO nanoparticles: UV–visible analysis and different size estimation methods. Optical Materials. 2024;152:115422.
  • Singh DK, Pandey DK, Yadav RR, Singh D. A study of nanosized zinc oxide and its nanofluid. Prama. 2012;78(5):759-66.
  • Ateş M. Nanoparçacıkların Ölçme ve İnceleme Teknikleri. Turkish Journal of Scientific Reviews. 2018;11(1):63-9.
  • Marsalek R. Particle Size and Zeta Potential of ZnO. APCBEE Procedia. 2014;9:13-7.
  • Günay K, Leblebici Z, Koca FD. Çinko Nanopartiküllerinin (ZnO NP) Biyosentezi, Karakterizasyonu ve Anti- Bakteriyel Etkisinin İncelenmesi. Nevşehir Bilim Teknoloji Dergisi. 2021;10(1):56-66.
  • Lee JK, Ann H-h, Yi Y, Lee KW, Uhm S, Lee J. A stable Ni–B catalyst in hydrogen generation via NaBH4 hydrolysis. Catalysis Communications. 2011;16(1):120-3.
  • Tang M, Xia F, Gao C, Qiu H. Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride. International Journal of Hydrogen Energy. 2016;41(30):13058-68.
  • Kim J-H, Kim K-T, Kang Y-M, Kim H-S, Song M-S, Lee Y-J, Lee PS, Lee J-Y. Study on degradation of filamentary Ni catalyst on hydrolysis of sodium borohydride. Journal of Alloys and Compounds. 2004;379(1):222-7.
  • Liu C-H, Chen B-H, Hsueh C-L, Ku J-R, Jeng M-S, Tsau F. Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. International Journal of Hydrogen Energy. 2009;34(5):2153-63.
  • Zhang F, Hou C, Zhang Q, Wang H, Li Y. Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation. Materials Chemistry and Physics. 2012;135(2):826-31.
  • Wang F, Luo Y, Wang Y, Zhu H. The preparation and performance of a novel spherical spider web-like structure RuNi / Ni foam catalyst for NaBH4 methanolysis. International Journal of Hydrogen Energy. 2019;44(26):13185-94.
  • Hung T-F, Kuo H-C, Tsai C-W, Chen HM, Liu R-S, Weng B-J, Lee J-F. An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride. Journal of Materials Chemistry. 2011;21(32):11754-9.
There are 45 citations in total.

Details

Primary Language English
Subjects Solution Chemistry
Journal Section Articles
Authors

Mehmet Erman Mert 0000-0002-0114-8707

Başak Doğru Mert 0000-0002-2270-9032

Publication Date December 30, 2024
Submission Date June 14, 2024
Acceptance Date October 26, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Mert, M. E., & Doğru Mert, B. (2024). Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis. Türk Doğa Ve Fen Dergisi, 13(4), 58-65. https://doi.org/10.46810/tdfd.1501490
AMA Mert ME, Doğru Mert B. Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis. TJNS. December 2024;13(4):58-65. doi:10.46810/tdfd.1501490
Chicago Mert, Mehmet Erman, and Başak Doğru Mert. “Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis”. Türk Doğa Ve Fen Dergisi 13, no. 4 (December 2024): 58-65. https://doi.org/10.46810/tdfd.1501490.
EndNote Mert ME, Doğru Mert B (December 1, 2024) Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis. Türk Doğa ve Fen Dergisi 13 4 58–65.
IEEE M. E. Mert and B. Doğru Mert, “Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis”, TJNS, vol. 13, no. 4, pp. 58–65, 2024, doi: 10.46810/tdfd.1501490.
ISNAD Mert, Mehmet Erman - Doğru Mert, Başak. “Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis”. Türk Doğa ve Fen Dergisi 13/4 (December 2024), 58-65. https://doi.org/10.46810/tdfd.1501490.
JAMA Mert ME, Doğru Mert B. Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis. TJNS. 2024;13:58–65.
MLA Mert, Mehmet Erman and Başak Doğru Mert. “Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 4, 2024, pp. 58-65, doi:10.46810/tdfd.1501490.
Vancouver Mert ME, Doğru Mert B. Investigation of Hydrogen Gas Production and Catalytic Effect of Green-Synthesized ZnO on NaBH4 Hydrolysis. TJNS. 2024;13(4):58-65.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.