Research Article
BibTex RIS Cite

Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model

Year 2018, Volume: 29 Issue: 2, 8317 - 8338, 01.03.2018
https://doi.org/10.18400/tekderg.339219

Abstract

Bu çalışmada üç parametreli zemin modeli kullanılarak elastik zemine oturan tabakalı ortotrop plakların hareketli yükler altındaki davranışı incelenmiştir. Yapılan analizlerde SAP2000 ve MATLAB paket programları eş zamanlı kullanılmıştır. Bu amaçla MATLAB ortamında OAPI fonksiyonlarını kullanan bir yazılım kodlanmıştır. Oluşturulan çözüm modeli literatürden alınan bir örnek üzerinde doğrulandıktan sonra laminasyon şeması, laminasyon açısı, tabaka sayısı zemin derinliği, zemin elastisite modulü, plak kalınlığı ve hareketli yükün hızı gibi parametrelerin plağın davranışı üzerindeki etkileri araştırılmıştır. mıştır.  Çalışmanın sonunda OAPI fonksiyonların kullanılmasıyla geliştirilen çözüm yönteminin bu tür karmaşık problemlerin çözümünde güvenilir ve pratik bir şekilde kullanılabileceği ortaya çıkmıştır.

References

  • [1] Kim, S.M., Roesset, J.M., Moving loads on a plate on elastic foundation. Journal of Engineering Mechanics-Asce. 124(9), 1010-1017, 1998. [2] Huang, M.H., Thambiratnam, D.P., Dynamic response of plates on elastic foundation to moving loads. Journal of Engineering Mechanics-Asce. 128(9, 1016-1022, 2002. [3] Kim, S.M., Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads. International Journal of Solids and Structures. 41(20), 5647-5661, 2004. [4] Lu, Z., Yao, H.L., Zhan, Y.X., Hu, Z., Vibrations of a plate on a two-parameter foundation subjected to moving rectangular loads of varying velocities. Journal of Vibroengineering. 16(3), 1543-1554, 2014. [5] Wang, X.D., Numerical analysis of moving orthotropic thin plates. Computers & Structures. 70(4), 467-486, 1999. [6] Zhu, X.Q., Law, S.S., Dynamic behavior of orthotropic rectangular plates under moving loads. Journal of Engineering Mechanics-Asce. 129(1), 79-87, 2003. [7] Alisjahbana, S.W., Dynamic Response of Clamped Orthotropic Plates to Dynamic Moving Loads in 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada, 2004. [8] Lee, S.Y., Yhim, S.S., Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory. International Journal of Solids and Structures. 41(16-17), 4457-4472, 2004. [9] Law, S.S., Bu, J.Q., Zhu, X.Q., Chan, S.L., Moving load identification on a simply supported orthotropic plate. International Journal of Mechanical Sciences. 49(11), 1262-1275, 2007. [10] Hatami, S., Azhari, M., Saadatpour M.M., Free vibration of moving laminated composite plates. Composite Structures. 80(4), 609-620, 2007. [11] Ghafoori, E., Asghari, M., Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory. Composite Structures. 92(8), 1865-1876, 2010. [12] Malekzadeh, P., Fiouz A.R., Razi, H., Three-dimensional dynamic analysis of laminated composite plates subjected to moving load. Composite Structures. 90(2), 105-114, 2009. [13] Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T., Rabczuk T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. International Journal for Numerical Methods in Engineering. 91(6), 571-603, 2012. [14] Chen, C.S., Tsai, T.C., Chen, W.R., Wei, C.L., Dynamic stability analysis of laminated composite plates in thermal environments. Steel and Composite Structures. 15(1), 57-79, 2013. [15] Patel, S.N., Nonlinear bending analysis of laminated composite stiffened plates. Steel and Composite Structures. 17(6), 867-890, 2014. [16] Ozcelikors, Y., Omurtag, M.H., Demir, H., Analysis of orthotropic plate-foundation interaction by mixed finite element formulation using Gateaux differential. Computers & Structures. 62(1), 93-106, 1997. [17] Pradhan, S.C., Kumar, A., Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Computational Materials Science. 50(1), 239-245, 2010. [18] Akgoz, B., Civalek, O., Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel and Composite Structures. 11(5), 403-421, 2011. [19] Vosoughi, A.R., Malekzadeh, P., Razi, H., Response of moderately thick laminated composite plates on elastic foundation subjected to moving load. Composite Structures. 97, 286-295, 2013. [20] Afsharmanesh, B., Ghaheri, A., Taheri-Behrooz, T., Buckling and vibration of laminated composite circular plate on winkler-type foundation. Steel and Composite Structures. 17(1), 1-19, 2014. [21] Mantari, J.L., Granados, E.V., Hinostroza, M.A., Soares, C.G., Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT. Composite Structures. 118, 455-471, 2014. [22] Alipour, M.M., An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations. Archives of Civil and Mechanical Engineering. 16(2), 193-210, 2016. [23] SAP2000, Integrated Finite Elements Analysis and Design of Structures. Computers and Structures. p. Inc, Berkeley, CA, 2008. [24] MATLAB, The language of technical computing. The Mathworks. p. Natick, MA, 2009. [25] Humar. J.L., Dynamic of Structures, Englewood Cliffs, NJ, Prentice-Hall, 1990. [26] Vallabhan, C.V.G., Straughan, W.T., Das, Y.C., Refined Model for Analysis of Plates on Elastic Foundations. Journal of Engineering Mechanics-Asce. 117(12), 2830-2844, 1991. [27] Kahya, V., Dynamic analysis of laminated composite beams under moving loads using finite element method. Nuclear Engineering and Design. 243, 41-48, 2012. [28] Shi, G., Lam, K.Y., Finite element vibration analysis of composite beams based on higher-order beam theory. Journal of Sound and Vibration. 219(4), 707-721, 1999. [29] Aydogdu, M., Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. International Journal of Mechanical Sciences. 47(11), 1740-1755, 2005. [30] Jun, L.H., H.; Rongying, S., Dynamic finite element method for generally laminated composite beams. International Journal of Mechanical Sciences. 50, 466-480, 2008.

Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model

Year 2018, Volume: 29 Issue: 2, 8317 - 8338, 01.03.2018
https://doi.org/10.18400/tekderg.339219

Abstract

In this study,
dynamic behavior of laminated orthotropic plates on elastic foundation is
investigated adapting the three parameter subsoil model. Analysis of the system
is performed by using SAP2000 combining with MATLAB code for calculation of
soil parameters of modified Vlasov model. A computing tool is coded in MATLAB for
the purpose allowing data exchange simultaneously between SAP2000 and MATLAB
via Open Application Programming Interface (OAPI) feature. The consistency of
the proposed model is shown comparatively with a numerical example taken from
the literature. Later, the effects of lamination scheme, various lamination
angles, lamination number, subsoil depth, elasticity modulus of subsoil, plate
thickness and velocity of moving load on the behavior of laminated orthotropic
plates on elastic foundation are investigated. It can be concluded that it is
really convenient to use OAPI feature of SAP2000 to model this complex behavior
of laminated orthotropic plates on elastic soil under moving load.

References

  • [1] Kim, S.M., Roesset, J.M., Moving loads on a plate on elastic foundation. Journal of Engineering Mechanics-Asce. 124(9), 1010-1017, 1998. [2] Huang, M.H., Thambiratnam, D.P., Dynamic response of plates on elastic foundation to moving loads. Journal of Engineering Mechanics-Asce. 128(9, 1016-1022, 2002. [3] Kim, S.M., Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads. International Journal of Solids and Structures. 41(20), 5647-5661, 2004. [4] Lu, Z., Yao, H.L., Zhan, Y.X., Hu, Z., Vibrations of a plate on a two-parameter foundation subjected to moving rectangular loads of varying velocities. Journal of Vibroengineering. 16(3), 1543-1554, 2014. [5] Wang, X.D., Numerical analysis of moving orthotropic thin plates. Computers & Structures. 70(4), 467-486, 1999. [6] Zhu, X.Q., Law, S.S., Dynamic behavior of orthotropic rectangular plates under moving loads. Journal of Engineering Mechanics-Asce. 129(1), 79-87, 2003. [7] Alisjahbana, S.W., Dynamic Response of Clamped Orthotropic Plates to Dynamic Moving Loads in 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada, 2004. [8] Lee, S.Y., Yhim, S.S., Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory. International Journal of Solids and Structures. 41(16-17), 4457-4472, 2004. [9] Law, S.S., Bu, J.Q., Zhu, X.Q., Chan, S.L., Moving load identification on a simply supported orthotropic plate. International Journal of Mechanical Sciences. 49(11), 1262-1275, 2007. [10] Hatami, S., Azhari, M., Saadatpour M.M., Free vibration of moving laminated composite plates. Composite Structures. 80(4), 609-620, 2007. [11] Ghafoori, E., Asghari, M., Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory. Composite Structures. 92(8), 1865-1876, 2010. [12] Malekzadeh, P., Fiouz A.R., Razi, H., Three-dimensional dynamic analysis of laminated composite plates subjected to moving load. Composite Structures. 90(2), 105-114, 2009. [13] Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T., Rabczuk T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. International Journal for Numerical Methods in Engineering. 91(6), 571-603, 2012. [14] Chen, C.S., Tsai, T.C., Chen, W.R., Wei, C.L., Dynamic stability analysis of laminated composite plates in thermal environments. Steel and Composite Structures. 15(1), 57-79, 2013. [15] Patel, S.N., Nonlinear bending analysis of laminated composite stiffened plates. Steel and Composite Structures. 17(6), 867-890, 2014. [16] Ozcelikors, Y., Omurtag, M.H., Demir, H., Analysis of orthotropic plate-foundation interaction by mixed finite element formulation using Gateaux differential. Computers & Structures. 62(1), 93-106, 1997. [17] Pradhan, S.C., Kumar, A., Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Computational Materials Science. 50(1), 239-245, 2010. [18] Akgoz, B., Civalek, O., Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel and Composite Structures. 11(5), 403-421, 2011. [19] Vosoughi, A.R., Malekzadeh, P., Razi, H., Response of moderately thick laminated composite plates on elastic foundation subjected to moving load. Composite Structures. 97, 286-295, 2013. [20] Afsharmanesh, B., Ghaheri, A., Taheri-Behrooz, T., Buckling and vibration of laminated composite circular plate on winkler-type foundation. Steel and Composite Structures. 17(1), 1-19, 2014. [21] Mantari, J.L., Granados, E.V., Hinostroza, M.A., Soares, C.G., Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT. Composite Structures. 118, 455-471, 2014. [22] Alipour, M.M., An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations. Archives of Civil and Mechanical Engineering. 16(2), 193-210, 2016. [23] SAP2000, Integrated Finite Elements Analysis and Design of Structures. Computers and Structures. p. Inc, Berkeley, CA, 2008. [24] MATLAB, The language of technical computing. The Mathworks. p. Natick, MA, 2009. [25] Humar. J.L., Dynamic of Structures, Englewood Cliffs, NJ, Prentice-Hall, 1990. [26] Vallabhan, C.V.G., Straughan, W.T., Das, Y.C., Refined Model for Analysis of Plates on Elastic Foundations. Journal of Engineering Mechanics-Asce. 117(12), 2830-2844, 1991. [27] Kahya, V., Dynamic analysis of laminated composite beams under moving loads using finite element method. Nuclear Engineering and Design. 243, 41-48, 2012. [28] Shi, G., Lam, K.Y., Finite element vibration analysis of composite beams based on higher-order beam theory. Journal of Sound and Vibration. 219(4), 707-721, 1999. [29] Aydogdu, M., Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. International Journal of Mechanical Sciences. 47(11), 1740-1755, 2005. [30] Jun, L.H., H.; Rongying, S., Dynamic finite element method for generally laminated composite beams. International Journal of Mechanical Sciences. 50, 466-480, 2008.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Korhan Özgan

Publication Date March 1, 2018
Submission Date September 21, 2017
Published in Issue Year 2018 Volume: 29 Issue: 2

Cite

APA Özgan, K. (2018). Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model. Teknik Dergi, 29(2), 8317-8338. https://doi.org/10.18400/tekderg.339219
AMA Özgan K. Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model. Teknik Dergi. March 2018;29(2):8317-8338. doi:10.18400/tekderg.339219
Chicago Özgan, Korhan. “Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model”. Teknik Dergi 29, no. 2 (March 2018): 8317-38. https://doi.org/10.18400/tekderg.339219.
EndNote Özgan K (March 1, 2018) Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model. Teknik Dergi 29 2 8317–8338.
IEEE K. Özgan, “Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model”, Teknik Dergi, vol. 29, no. 2, pp. 8317–8338, 2018, doi: 10.18400/tekderg.339219.
ISNAD Özgan, Korhan. “Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model”. Teknik Dergi 29/2 (March 2018), 8317-8338. https://doi.org/10.18400/tekderg.339219.
JAMA Özgan K. Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model. Teknik Dergi. 2018;29:8317–8338.
MLA Özgan, Korhan. “Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model”. Teknik Dergi, vol. 29, no. 2, 2018, pp. 8317-38, doi:10.18400/tekderg.339219.
Vancouver Özgan K. Modelling Laminated Orthotropic Plate-Foundation Interaction Subjected to Moving Load Using Vlasov Model. Teknik Dergi. 2018;29(2):8317-38.