Research Article
BibTex RIS Cite

Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme

Year 2020, Volume: 31 Issue: 1, 9683 - 9709, 01.01.2020
https://doi.org/10.18400/tekderg.341401

Abstract

Bu
çalışmada tersinir çevrimsel yükle zorlanan betonarme kirişlerin düşey işletme
yükü etkisini içeren ve içermeyen yüklemeler altındaki davranışları deneysel
olarak incelenmiştir. Bu incelemelerde düşey yük etkisinin kuvvet, çevrimsel
yük etkisinin yer değiştirme kontrollü uygulandığı yükleme geçmişiyle elde
edilen deneysel sonuçlar, artan genlikli çevrimsel yer değiştirme uygulanan
kontrol numunelerinin deneysel sonuçlarıyla ve ayrıca Türk Deprem Yönetmeliği
Hasar Sınırı Yaklaşımı kabulleriyle elde edilen analitik sonuçlarla karşılaştırılmalı
olarak irdelenmiştir. Bu incelemelerde kiriş mesnet kesitlerinin
boyutlandırılmasında belirgin düzeydeki işletme yükünün, aşırı zorlanan plastik
mafsal kesimlerinin tek doğrultulu çevrimsel davranış sergilemesine ve
yönetmelikteki Hasar Sınırı Yaklaşımıyla belirlenen dönme kapasitesinin oldukça
üzerinde plastik dönme kapasitesine neden olduğu tespit edilmiştir. 

References

  • [1] Betonarme Yapıların Hesap ve Yapım Kuralları, TS-500, Türk Standartları Enstitüsü, Ankara, 2000.
  • [2] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı, Ankara, Mart 2007.
  • [3] EN 1998-3, Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, Brussels, 2003.
  • [4] Corley, G. W., Rotational Capacity of Reinforced Concrete Beams, Journal of the Structural Division, ASCE, V. 92, 121-146, 1966
  • [5] Baker, A. L. L., and Amarakone, A. M. N., Inelastic Hyperstatic Frame Analysis, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 85-142, 1967.
  • [6] Mattock, A. H., Rotational Capacity of Hinging Regions in Reinforced Concrete Beams, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 143-181, 1967.
  • [7] Eligehausen, R., and Langer, P., Rotation Capacity of Plastic Hinges and Allowable Moment Redistribution, CEB Bulletin, No. 175, I7.9-I7.27, 1987.
  • [8] Hillerborg, A., Fracture Mechanics Concepts Applied to Moment Capacity and Rotational Capacity of Reinforced Concrete Beams, Engineering Fracture Mechanics, V. 35, 233-240, 1990.
  • [9] Bigaj, A. J., Structural Dependence of Rotation Capacity of Plastic Hinges in RC Beams and Slabs, PhD thesis, Delft University, the Netherlands, 1999.
  • [10] Bigaj, A. J., and Walraven, J., Size Effects on Plastic Hinges of Reinforced Concrete Members, Heron, V. 47, 53-75, 2002.
  • [11] Ma, S.Y.M., Bertore, V.V, and Popov, E.P., Experimental and Analytical Studies On Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams, Report EERC 76-2, University of California, Berkeley, May 1976, 241 pages.
  • [12] ECCS, Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads, European Convention for Constructional Steelwork, 1985.
  • [13] ACI T1.1-01, Acceptance criteria for moment frames based on structural testing, ACI, 2001.
  • [14] ATC Report No. 24, Guidelines for seismic testing of components of steel structures, ATC, 1992.
  • [15] Megget, L. M. and Fenwick, R. C., Seismic behaviour of a reinforced concrete portal frame sustaining gravity goads, Bulletin of NZ Society for Earthquake Engineering, Vol. 22, No. 1, 1989.
  • [16] Walker A.F., and Dhakal R.P., Assessment of material strain limits for defining plastic regions in concrete structures, Bulletin of The New Zealand Society for Earthquake Engineering, Vol. 42, No. 2, 2009.
  • [17] Gião R., Lúcio V., and Chastre C., Assessing the behaviour of RC beams subject to significant gravity loads under cyclic loads, Engineering Structures, Vol. 59, 512-21, 2014.
  • [18] Kaya E., Kütan C., Sheikh S., and İlki A., Flexural Retrofit of Support Regions of Reinforced Concrete Beams with Anchored FRP Ropes UsingNSM and ETS Methods under Reversed Cyclic Loading, J. Compos. Constr., 21(1), 2017.
  • [19] Federal Emergency Management Agency, Prestandard and commentary for the seismic rehabilitation of buildings, Washington (DC): FEMA-356, 2000.
  • [20] SANZ Concrete Structures Standard, NZS 3101:2006. Standards Association, Wellington, NZ, 2006.
  • [21] Ersoy U., Betonarme Kiriş ve Kolonların Moment Kapasitelerinin Saptanması, Teknik Dergi, 9(4), 1781-97, 1998.
  • [22] Aydemir C., Döşeme Donatılarının İç Aks Kirişlerinin Negatif Moment Kapasitesi Üzerine Etkisi, Teknik Dergi, 24(1), 6279-6306, 2013.
  • [23] Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, New York, 1975.
  • [24] Aydemir C., ve Aydemir M.E., Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi, Teknik Dergi, 28(4), 8023-49, 2017.
  • [25] Mieses, A.M., Inelastic Buckling Behavior of Concrete Reinforcing Bars under Monotonic Uniaxial Compressive Loading, M.S. thesis, The University of Texas at Austin, 2002
  • [26] Dhakal, R.P. and Maekawa, K., Reinforcement Stability and Fracture of Cover Concrete in Reinforced Concrete Members, Journal of Structural Engineering, ASCE, 128(10):1253-1262, 2002.

An Experimental Research on Hysteretic Behavior of RC Beams under Significant Gravity Loads

Year 2020, Volume: 31 Issue: 1, 9683 - 9709, 01.01.2020
https://doi.org/10.18400/tekderg.341401

Abstract

In this study, an
experimental research to obtain the effects of significant gravity load on the
hysteretic behaviors of RC beams is presented. To this purpose, an experimental
program is carried out in which gravity loads are applied by force controlled test
procedure whereas cyclic loads are applied by displacement controlled test
procedure. It is found from the experimental results that significant gravity
load is an effective parameter on plastic hinge mechanism. The experimental
results of specimens with and without significant gravity load are compared to
each other. Experimentally observed damage states, plastic hinge zones and
deformation demands are also compared with the respective values proposed by
Turkish Seismic Design Code. The results of the limited number of test
specimens show that, the loading procedure with significant gravity load effect
leads to the formation of non-reversing plastic hinge and analytical collapse
limit given in Turkish Seismic Design Code remains very conservative.

References

  • [1] Betonarme Yapıların Hesap ve Yapım Kuralları, TS-500, Türk Standartları Enstitüsü, Ankara, 2000.
  • [2] Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı, Ankara, Mart 2007.
  • [3] EN 1998-3, Eurocode 8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings, Brussels, 2003.
  • [4] Corley, G. W., Rotational Capacity of Reinforced Concrete Beams, Journal of the Structural Division, ASCE, V. 92, 121-146, 1966
  • [5] Baker, A. L. L., and Amarakone, A. M. N., Inelastic Hyperstatic Frame Analysis, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 85-142, 1967.
  • [6] Mattock, A. H., Rotational Capacity of Hinging Regions in Reinforced Concrete Beams, Flexural Mechanics of Reinforced Concrete, ACI, SP-12, 143-181, 1967.
  • [7] Eligehausen, R., and Langer, P., Rotation Capacity of Plastic Hinges and Allowable Moment Redistribution, CEB Bulletin, No. 175, I7.9-I7.27, 1987.
  • [8] Hillerborg, A., Fracture Mechanics Concepts Applied to Moment Capacity and Rotational Capacity of Reinforced Concrete Beams, Engineering Fracture Mechanics, V. 35, 233-240, 1990.
  • [9] Bigaj, A. J., Structural Dependence of Rotation Capacity of Plastic Hinges in RC Beams and Slabs, PhD thesis, Delft University, the Netherlands, 1999.
  • [10] Bigaj, A. J., and Walraven, J., Size Effects on Plastic Hinges of Reinforced Concrete Members, Heron, V. 47, 53-75, 2002.
  • [11] Ma, S.Y.M., Bertore, V.V, and Popov, E.P., Experimental and Analytical Studies On Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams, Report EERC 76-2, University of California, Berkeley, May 1976, 241 pages.
  • [12] ECCS, Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads, European Convention for Constructional Steelwork, 1985.
  • [13] ACI T1.1-01, Acceptance criteria for moment frames based on structural testing, ACI, 2001.
  • [14] ATC Report No. 24, Guidelines for seismic testing of components of steel structures, ATC, 1992.
  • [15] Megget, L. M. and Fenwick, R. C., Seismic behaviour of a reinforced concrete portal frame sustaining gravity goads, Bulletin of NZ Society for Earthquake Engineering, Vol. 22, No. 1, 1989.
  • [16] Walker A.F., and Dhakal R.P., Assessment of material strain limits for defining plastic regions in concrete structures, Bulletin of The New Zealand Society for Earthquake Engineering, Vol. 42, No. 2, 2009.
  • [17] Gião R., Lúcio V., and Chastre C., Assessing the behaviour of RC beams subject to significant gravity loads under cyclic loads, Engineering Structures, Vol. 59, 512-21, 2014.
  • [18] Kaya E., Kütan C., Sheikh S., and İlki A., Flexural Retrofit of Support Regions of Reinforced Concrete Beams with Anchored FRP Ropes UsingNSM and ETS Methods under Reversed Cyclic Loading, J. Compos. Constr., 21(1), 2017.
  • [19] Federal Emergency Management Agency, Prestandard and commentary for the seismic rehabilitation of buildings, Washington (DC): FEMA-356, 2000.
  • [20] SANZ Concrete Structures Standard, NZS 3101:2006. Standards Association, Wellington, NZ, 2006.
  • [21] Ersoy U., Betonarme Kiriş ve Kolonların Moment Kapasitelerinin Saptanması, Teknik Dergi, 9(4), 1781-97, 1998.
  • [22] Aydemir C., Döşeme Donatılarının İç Aks Kirişlerinin Negatif Moment Kapasitesi Üzerine Etkisi, Teknik Dergi, 24(1), 6279-6306, 2013.
  • [23] Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, New York, 1975.
  • [24] Aydemir C., ve Aydemir M.E., Betonarme Kirişlerin Hasar Sınırlarının Deneysel Gözlemlerle İrdelenmesi, Teknik Dergi, 28(4), 8023-49, 2017.
  • [25] Mieses, A.M., Inelastic Buckling Behavior of Concrete Reinforcing Bars under Monotonic Uniaxial Compressive Loading, M.S. thesis, The University of Texas at Austin, 2002
  • [26] Dhakal, R.P. and Maekawa, K., Reinforcement Stability and Fracture of Cover Concrete in Reinforced Concrete Members, Journal of Structural Engineering, ASCE, 128(10):1253-1262, 2002.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Cem Aydemir 0000-0003-4531-5084

Müberra Eser Aydemir 0000-0002-4609-4845

Pınar Yıldırım This is me 0000-0002-6667-9365

Publication Date January 1, 2020
Submission Date October 3, 2017
Published in Issue Year 2020 Volume: 31 Issue: 1

Cite

APA Aydemir, C., Eser Aydemir, M., & Yıldırım, P. (2020). Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme. Teknik Dergi, 31(1), 9683-9709. https://doi.org/10.18400/tekderg.341401
AMA Aydemir C, Eser Aydemir M, Yıldırım P. Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme. Teknik Dergi. January 2020;31(1):9683-9709. doi:10.18400/tekderg.341401
Chicago Aydemir, Cem, Müberra Eser Aydemir, and Pınar Yıldırım. “Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme”. Teknik Dergi 31, no. 1 (January 2020): 9683-9709. https://doi.org/10.18400/tekderg.341401.
EndNote Aydemir C, Eser Aydemir M, Yıldırım P (January 1, 2020) Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme. Teknik Dergi 31 1 9683–9709.
IEEE C. Aydemir, M. Eser Aydemir, and P. Yıldırım, “Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme”, Teknik Dergi, vol. 31, no. 1, pp. 9683–9709, 2020, doi: 10.18400/tekderg.341401.
ISNAD Aydemir, Cem et al. “Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme”. Teknik Dergi 31/1 (January 2020), 9683-9709. https://doi.org/10.18400/tekderg.341401.
JAMA Aydemir C, Eser Aydemir M, Yıldırım P. Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme. Teknik Dergi. 2020;31:9683–9709.
MLA Aydemir, Cem et al. “Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme”. Teknik Dergi, vol. 31, no. 1, 2020, pp. 9683-09, doi:10.18400/tekderg.341401.
Vancouver Aydemir C, Eser Aydemir M, Yıldırım P. Belirgin Düşey Yük Etkisindeki Betonarme Kirişlerin Çevrimsel Yükler Altındaki Davranışı Üzerine Deneysel Bir İnceleme. Teknik Dergi. 2020;31(1):9683-709.